
010123131

Software Development Practice I

Handout #9

<rawat.s@eng.kmutnb.ac.th>

Last Update: 2024-08-13

 2

Open Source

Smart Home Platforms

 3

Expected Learning Outcomes
● Understand the basic concepts and architecture of smart

home systems.
● Identify and describe various smart home devices and their

roles within a smart home ecosystem.
● Explain the MQTT communication protocol and its

significance in IoT and smart home environments.
● Demonstrate the ability to integrate different smart home

protocols and devices to create a unified smart home system.

 4

Expected Learning Outcomes
● Understand the principles of ZigBee wireless communication

and its applications in smart home networks.
● Understand the concept of Tasmota firmware for ESP-based

devices.
● Compare features between Tasmota and other solutions such as

ESPHome.
● Flash / configure Tasmota firmware on ESP-based devices, and

customize Tasmota settings for various sensor modules and
smart home applications.

 5

Home Automation / Smart Home
● A Smart Home, or Home Automation, refers to the

integration of hardware and software into the home
environment to enhance convenience, security, and
energy efficiency through automated control.

● Smart home devices usually use wireless technologies
such as Wi-Fi, Bluetooth / BLE, Zigbee, Z-Wave or
Matter to communicate and interact.

● Smart homes can automate tasks based on schedules or
triggers according to specific conditions defined by users.

 6

Home Automation / Smart Home
● Many smart home devices and platforms use

HTTPS and WebSocket protocols.
– HTTPS is a standard protocol used to secure

communications by encrypting data between the client
and the servers.

– WebSocket is a protocol providing full-duplex
communication channels over a single TCP connection.
It is commonly used for real-time communication
between devices and smart home platforms.

 7

Commercial Smart Home Platforms
● Examples include:

– Apple HomeKit
– Samsung SmartThings
– Google Home
– Xiaomi Mi Home
– Tuya Smart

 8

Open-source Smart Home Platforms
● Examples include:

– Home Assistant (HA): https://www.home-assistant.io/

– OpenHAB: https://github.com/openhab

– Domoticz: https://github.com/domoticz/domoticz

– ioBroker: https://github.com/ioBroker/ioBroker

https://www.home-assistant.io/
https://github.com/openhab
https://github.com/domoticz/domoticz
https://github.com/ioBroker/ioBroker

 9

Choosing Smart Home Platforms
● Key issues when choosing smart home platforms

– Device Integration and Support
– Communication Protocol Support
– Ease of Use (Setup and Configuration)
– GUI User Interface / Dashboard
– Active Community and Support, Documentation

 10

Choosing Smart Home Platforms
● Key issues when choosing smart home platforms

– Active Development and Updates
– Extensibility and Customization
– Performance and Reliability
– Security and Privacy
– Scalability
– Multi-vendor Device Support

 11

Zigbee
● Zigbee is an open-standard

wireless communication
protocol specifically designed for
low-power, low-data-rate
applications in home automation
and IoT.

● It supports Mesh networking with
low power consumption of sensor
devices.
Image Source: https://csa-iot.org/

https://csa-iot.org/

 12

Zigbee
● Zigbee Standard: The Connectivity Standards Alliance

(CSA), formerly known as the Zigbee Alliance, developed
the Zigbee standards.

● Zigbee is based on EEE 802.15.4, which is a standard for
low-rate wireless personal area networks (LR-WPANs) for
the physical (PHY) and MAC layers.

● It also adds its own layers including the network (NWK),
application (APL), and security (APS).

 13

Zigbee
● Zigbee 3.0: The Zigbee Pro specification adds new

features such as child device management, improved
security, and new network topology options.

● Zigbee networks typically operate on the following
frequency bands:
– 2.4 GHz Band (world-wide): 16 channels (numbered 11 to 26)

with a data rate of up to 250 kbps.

– 868 MHz Band (Europe)

– 915 MHz Band (North America)

 14

Image Source: https://csa-iot.org/newsroom/zigbee-stack-components/

https://csa-iot.org/newsroom/zigbee-stack-components/

 15Image Source: https://www.digi.com/solutions/by-technology/zigbee-wireless-standard

https://www.digi.com/solutions/by-technology/zigbee-wireless-standard

 16

Features of Zigbee
● Flexibility — Supports multiple network topologies such as point-to-point, point-to-multipoint and

mesh networks
● Low-duty cycle — Provides long battery life
● Low latency — Can easily transport sensor data with minimal latency
● Scalability — Includes Direct Sequence Spread Spectrum (DSSS) up to 65,000 nodes per network
● Robustness — Employs collision avoidance, retries and acknowledgments
● Low power consumption — Zigbee devices can operate for several years on a single inexpensive

battery thanks to its use of a power-saving feature called “sleep mode”
● Low data rate — With a data rate of up to 250 kbit/s, Zigbee is best suited for intermittent data

sensor or device transmissions
● Security — Zigbee security uses 128-bit AES encryption as well as many additional security

techniques.

 17

Matter
● It is a unified standard for device compatibility and

interoperability, bridging gaps between different
communication protocols and ecosystems.

● It supports networking and Internet connectivity (based on
IPv6) and is compatible with existing technologies,
including Zigbee and OpenThread.

● Matter uses Thread / OpenThread as one of its
networking layers to support Mesh networking and low-
power communication between devices.

 18

MQTT
● MQTT = Message Queuing Telemetry Transport

● It is a lightweight, publish-subscribe network protocol
for efficient Machine-to-Machine (M2M) data transmission
in IoT and smart home systems.

● MQTT operates over TCP/IP at the network transport
layer, which ensures that MQTT messages are reliably
transmitted over the network.

 19

MQTT
● MQTT is based on a server-client architecture: MQTT

clients and MQTT brokers (servers) communicate
using TCP/IP sockets.

● Key functions of an MQTT broker include:
– Topic-based message routing
– Quality of Service (QoS) based message delivery
– Session Management for MQTT subscribers and publishers
– Security (Authentication and data encryption)

 20

MQTT Brokers
● Many MQTT brokers do support WebSocket,

allowing web-based clients (such as browsers) to
connect to the MQTT broker.

● Examples of public MQTT brokers include:
– Mosquitto (open source)
– HiveMQ
– EMQX

 21

ZigBee Hub
● A Zigbee Hub is a device that serves as a central

coordinator for a ZigBee network (called the Zigbee
network coordinator).

● It also serves as a bridge between ZigBee devices
(Zigbee end devices or Zigbee routers) and other
systems, such as smart home platforms or cloud
services.

 22

Examples of Zigbee 3.0 Hubs
● Philips Hue Bridge

● Samsung SmartThings Hub

● Amazon Echo Plus

● Tuya ZigBee 3.0 Smart Gateway Hub

● Xiaomi Gateway (Zigbee 3.0)

● Athom Zigbee 3.0 Gateway

 23Image Source: https://athombridge.com/products/athom-zigbee-gateway

Ti CC2652P Module

Espressif
ESP32-WROOM-32E

Module

RJ45 port for
Ethernet

Athom ZG01 Zigbee Gateway

https://athombridge.com/products/athom-zigbee-gateway

 24

ZigBee2MQTT
● It is an open-source project that allows Zigbee devices

to communicate with a smart home system via MQTT.
● It acts as a bridge or gateway between Zigbee networks

and an MQTT broker.
● Zigbee2MQTT bridges the gap by converting Zigbee

communication to MQTT, allowing ZigBee devices to
work with MQTT-based smart home systems.

● Many smart home systems and platforms support MQTT
for device integration.

 25

Image Source: ZigBee2MQTT

 26

Home Assistant (HA)
● It is an open-source home automation platform that

focuses on privacy and local control.
● It provides a user-customizable dashboard to control

and monitor smart home devices.
● It can integrate with popular voice assistants like

Amazon Alexa and Google Assistant, allowing for
voice control of your smart home devices.

 27Image source: https://hometechhacker.com/mqtt-home-assistant-using-docker-eclipse-mosquitto/

https://hometechhacker.com/mqtt-home-assistant-using-docker-eclipse-mosquitto/

 28

Options for Deploying HA
● Home Assistant OS: recommended installation method

– A dedicated OS for HA that runs on SBCs such as RPi.

● Home Assistant Core + Supervised:
– A manual installation of HAt on any Python-supported system.

● Home Assistant Container using Docker:
– A containerized installation of the HA using a Docker image

from Docker Hub.

 29

Node-RED
● Node-RED is an open source, flow-based

development tool for visual programming of home
automation tasks.

● It provides a graphical user interface (GUI) for creating
and managing flows using a drag-and-drop approach.

● Node-RED can be installed as an add-on in Home
Assistant (for HA OS).

 30

Node-RED
● Node-RED supports a variety of communication

protocols and standards used in smart home
applications such as HTTPS, WebSocket and MQTT.

● Node-RED can be used with Home Assistant (HA),
which is an open-source smart home platform, using
WebSockets for communication.

 31

Firmware Options for Smart Home Devices

● Tasmota and ESPHome are both popular open-source
firmware options for ESP8266 and ESP32-based
devices, especially DIY projects.
– Tasmota: https://tasmota.github.io/docs/,

https://github.com/arendst/Tasmota
– ESPHome: https://esphome.io/index.html,

https://github.com/esphome/esphome

● Both software support over-the-air (OTA) updates of
firmware for ESP8266 and ESP32-based devices.

https://tasmota.github.io/docs/
https://github.com/arendst/Tasmota
https://esphome.io/index.html
https://github.com/esphome/esphome

 32

Tasmota vs. ESPHome
● Both Tasmota and ESPHome are not a standalone smart home

platform but rather a tool for creating firmware for smart devices.
It is often used in conjunction with platforms like Home
Assistant.

● ESPHome utilizes the ESP-IDF framework and PlatformIO
(PIO core) for building its firmware and YAML is used to define
various settings and parameters for the ESPHome firmware.

● In contrast, Tasmota is based on the Arduino framework. The
Tasmota firmware utilizes Arduino core libraries for the
ESP8266 and ESP32 microcontrollers.

 33

Tasmota
● Tasmota is an open-source firmware designed

primarily for Espressif's ESP8266 and ESP32-based
devices, commonly used in smart home applications.

● Tasmota devices can be controlled via:
– Web UI (https://tasmota.github.io/docs/WebUI/).

– HTTP / WebSockets, MQTT (Documentation and Serial port

https://tasmota.github.io/docs/WebUI/

 34

Tasmota
● Tasmota supports Over-the-Air (OTA) firmware

updates, simplifying the process of keeping devices
up to date.

● It supports integration with smart home or home
automation platforms such as Home Assistant (HA).

● Documentation:
– https://tasmota.github.io/docs/

https://tasmota.github.io/docs/

 35

Tasmota
● For ESP32 devices, the Tasmota source code

utilizes the Arduino-ESP32 core v3.0.x+.
● The following ESP32 device families are supported:

– Tensilica Xtensa based: ESP32, ESP32-S2, ESP32-S3
– RISC-V based: ESP32-C2, ESP32-C3, ESP32-C6,

ESP32H2

 36

Tasmota Firmware Options
● There are two categories of pre-compiled

firmware files (.bin).
– Initial firmware vs. OTA firmware (from the official

OTA server).
– ESP8266: https://ota.tasmota.com/tasmota/release/
– ESP32: http://ota.tasmota.com/tasmota32/release/

https://ota.tasmota.com/tasmota/release/
http://ota.tasmota.com/tasmota32/release/

 37

Tasmota Firmware Options
● There are different Tasmota firmware variants

(both initial and OTA firmware).
● Initial firmware .bin files for different ESP families:

– ESP32: tasmota32.factory.bin

– ESP32C3: tasmota32c3.factory.bin

– ESP32S3: tasmota32s3.factory.bin

 38

 39

 40

Tasmota Firmware Flashing
● The initial firmware can be flashed using ESPTool

(a Python-based tool) developed by Espressif:

● Alternatively, Tasmota firmware can be flashed onto
an ESP32 device via the Tasmota Web Installer.
– URL https://tasmota.github.io/install/

$ esptool.py write_flash 0x0 <tasmota32.factory.bin>

https://tasmota.github.io/install/

 41

Tasmota Firmware Flashing
● After the initial firmware has been flashed and the

device is configured to connect to a Wi-Fi network, it
can be updated with OTA firmware (over Wi-Fi).

● Tasmota's Device Template
– A template defines an ESP8266 or ESP32 device and how

its GPIOs are assigned.
– Learn more about templates:

https://tasmota.github.io/docs/Templates/

https://tasmota.github.io/docs/Templates/

 42

Tasmota Firmware Build
● Since Tasmota firmware is open source, users can

configure and compile custom versions (for example,
using a Docker container).
– Firmware Options: Choose between tasmota

(for ESP8266) or tasmota32 (for ESP32).

– Customization: Modify features by editing the
user_config_override.h file.

● Documentation:
– https://tasmota.github.io/docs/Compile-your-build/

https://tasmota.github.io/docs/Compile-your-build/

 43

Tasmota Rules
● Tasmota supports rules that are used to trigger events

and send MQTT messages, or trigger other rules or
actions, enabling complex automation sequences.

● Example:
– Turn on an air-conditioner when a temperature sensor

reading exceeds 25°C and send an MQTT message to the
MQTT broker when this happens.

 44

Tasmota Supported Devices Repository

2807 supported devices
Last access: 2024-08-13

 45

Tasmota Device Setup
● Steps to do after flashing the Tasmota firmware to an

ESP8266 / ESP32 device.
– Initial Wi-Fi Setup: Connect to the ESP32's Wi-Fi AP with the

SSID: tasmota-XXXX where XXXX are hexadecimals.
● The default IP address of the device: 192.168.4.1.

– Wi-Fi Setting: Enter the SSID and password for the Wi-Fi network
to be used and reset the device.

– Device Configuration: Set the device template and other
configurations.

 46

Initial Wi-Fi Setup

 47

Tasmota Web Interface – the Main Menu page

 48

Tasmota Web Interface – Configuration Settings

 49

Tasmota Device Template and GPIO Configuration

 50

User-defined GPIO Settings for ESP32C3 Device

 51

User-defined Settings for MQTT Broker

 52
Image Source: https://templates.blakadder.com/sonoff_BASICR4.html

https://templates.blakadder.com/sonoff_BASICR4.html

 53

Tasmota – Matter Support

Image Source: https://tasmota.github.io/docs/Matter/

https://tasmota.github.io/docs/Matter/

 54

Key features of Tasmota
● To summarize, the following are key features of Tasmota:

– Open source and free
– Support for a wide variety of sensor modules
– Customization, flexibility and local control
– MQTT support
– OTA firmware support
– User-Friendly Web Interface
– Low-code or no-code feature customization

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

