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Open Source 

Smart Home Platforms 
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Expected Learning Outcomes
● Understand the basic concepts and architecture of smart 

home systems.
● Identify and describe various smart home devices and their 

roles within a smart home ecosystem.
● Explain the MQTT communication protocol and its 

significance in IoT and smart home environments.
● Demonstrate the ability to integrate different smart home 

protocols and devices to create a unified smart home system.
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Expected Learning Outcomes
● Understand the principles of ZigBee wireless communication 

and its applications in smart home networks.
● Understand the concept of Tasmota firmware for ESP-based 

devices.
● Compare features between Tasmota and other solutions such as 

ESPHome.
● Flash / configure Tasmota firmware on ESP-based devices, and 

customize Tasmota settings for various sensor modules and 
smart home applications.
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Home Automation / Smart Home
● A Smart Home, or Home Automation, refers to the 

integration of hardware and software into the home 
environment to enhance convenience, security, and 
energy efficiency through automated control.

● Smart home devices usually use wireless technologies 
such as Wi-Fi, Bluetooth / BLE, Zigbee, Z-Wave or 
Matter to communicate and interact.

● Smart homes can automate tasks based on schedules or 
triggers according to specific conditions defined by users.
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Home Automation / Smart Home
● Many smart home devices and platforms use 

HTTPS and WebSocket protocols.
– HTTPS is a standard protocol used to secure 

communications by encrypting data between the client 
and the servers.

– WebSocket is a protocol providing full-duplex 
communication channels over a single TCP connection. 
It is commonly used for real-time communication 
between devices and smart home platforms. 
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Commercial Smart Home Platforms
● Examples include:

– Apple HomeKit
– Samsung SmartThings
– Google Home
– Xiaomi Mi Home
– Tuya Smart
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Open-source Smart Home Platforms
● Examples include:

– Home Assistant (HA): https://www.home-assistant.io/ 

– OpenHAB: https://github.com/openhab 

– Domoticz: https://github.com/domoticz/domoticz  

– ioBroker: https://github.com/ioBroker/ioBroker  

https://www.home-assistant.io/
https://github.com/openhab
https://github.com/domoticz/domoticz
https://github.com/ioBroker/ioBroker
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Choosing Smart Home Platforms
● Key issues when choosing smart home platforms

– Device Integration and Support
– Communication Protocol Support
– Ease of Use (Setup and Configuration)
– GUI User Interface / Dashboard
– Active Community and Support, Documentation
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Choosing Smart Home Platforms
● Key issues when choosing smart home platforms

– Active Development and Updates
– Extensibility and Customization
– Performance and Reliability
– Security and Privacy
– Scalability
– Multi-vendor Device Support
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Zigbee
● Zigbee is an open-standard 

wireless communication 
protocol specifically designed for 
low-power, low-data-rate 
applications in home automation 
and IoT.

● It supports Mesh networking with 
low power consumption of sensor 
devices.
Image Source: https://csa-iot.org/ 

https://csa-iot.org/
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Zigbee
● Zigbee Standard: The Connectivity Standards Alliance 

(CSA), formerly known as the Zigbee Alliance, developed 
the Zigbee standards.

● Zigbee is based on EEE 802.15.4, which is a standard for 
low-rate wireless personal area networks (LR-WPANs) for  
the physical (PHY) and MAC layers.

● It also adds its own layers including the network (NWK), 
application (APL), and security (APS).



  13

Zigbee
● Zigbee 3.0: The Zigbee Pro specification adds new 

features such as child device management, improved 
security, and new network topology options.

● Zigbee networks typically operate on the following 
frequency bands:
– 2.4 GHz Band (world-wide): 16 channels (numbered 11 to 26) 

with a data rate of up to 250 kbps.

– 868 MHz Band (Europe)

– 915 MHz Band (North America)
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Image Source: https://csa-iot.org/newsroom/zigbee-stack-components/ 

https://csa-iot.org/newsroom/zigbee-stack-components/


  15Image Source: https://www.digi.com/solutions/by-technology/zigbee-wireless-standard 

https://www.digi.com/solutions/by-technology/zigbee-wireless-standard
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Features of Zigbee
● Flexibility — Supports multiple network topologies such as point-to-point, point-to-multipoint and 

mesh networks
● Low-duty cycle — Provides long battery life
● Low latency — Can easily transport sensor data with minimal latency
● Scalability — Includes Direct Sequence Spread Spectrum (DSSS) up to 65,000 nodes per network
● Robustness — Employs collision avoidance, retries and acknowledgments
● Low power consumption — Zigbee devices can operate for several years on a single inexpensive 

battery thanks to its use of a power-saving feature called “sleep mode”
● Low data rate — With a data rate of up to 250 kbit/s, Zigbee is best suited for intermittent data 

sensor or device transmissions
● Security — Zigbee security uses 128-bit AES encryption as well as many additional security 

techniques.
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Matter
● It is a unified standard for device compatibility and 

interoperability, bridging gaps between different 
communication protocols and ecosystems.

● It supports networking and Internet connectivity  (based on 
IPv6) and is compatible with existing technologies, 
including Zigbee and OpenThread.

● Matter uses Thread / OpenThread as one of its 
networking layers to support Mesh networking and  low-
power communication between devices.
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MQTT
● MQTT = Message Queuing Telemetry Transport

● It is a lightweight, publish-subscribe network protocol 
for efficient Machine-to-Machine (M2M) data transmission 
in IoT and smart home systems.

● MQTT operates over TCP/IP at the network transport 
layer, which ensures that MQTT messages are reliably 
transmitted over the network. 
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MQTT
● MQTT is based on a server-client architecture: MQTT 

clients and MQTT brokers (servers) communicate 
using TCP/IP sockets. 

● Key functions of an MQTT broker include:
– Topic-based message routing
– Quality of Service (QoS) based message delivery
– Session Management for MQTT subscribers and publishers
– Security (Authentication and data encryption)
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MQTT Brokers
● Many MQTT brokers do support WebSocket, 

allowing web-based clients (such as browsers) to 
connect to the MQTT broker.

● Examples of public MQTT brokers include:
– Mosquitto (open source)
– HiveMQ
– EMQX
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ZigBee Hub
● A Zigbee Hub is a device that serves as a central 

coordinator for a ZigBee network (called the Zigbee 
network coordinator). 

● It also serves as a bridge between ZigBee devices 
(Zigbee end devices or Zigbee routers) and other 
systems, such as smart home platforms or cloud 
services.
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Examples of Zigbee 3.0 Hubs
● Philips Hue Bridge

● Samsung SmartThings Hub

● Amazon Echo Plus

● Tuya ZigBee 3.0 Smart Gateway Hub

● Xiaomi Gateway (Zigbee 3.0)

● Athom Zigbee 3.0  Gateway



  23Image Source: https://athombridge.com/products/athom-zigbee-gateway 

Ti CC2652P Module

Espressif 
ESP32-WROOM-32E 

Module

RJ45 port for
Ethernet

Athom ZG01 Zigbee Gateway

https://athombridge.com/products/athom-zigbee-gateway
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ZigBee2MQTT
● It is an open-source project that allows Zigbee devices 

to communicate with a smart home system via MQTT. 
● It acts as a bridge or gateway between Zigbee networks 

and an MQTT broker.
● Zigbee2MQTT bridges the gap by converting Zigbee 

communication to MQTT, allowing ZigBee devices to 
work with MQTT-based smart home systems.

● Many smart home systems and platforms support MQTT 
for device integration. 
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Image Source: ZigBee2MQTT
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Home Assistant (HA)
● It is an open-source home automation platform that 

focuses on privacy and local control.
● It provides a user-customizable dashboard to control 

and monitor smart home devices.  
● It can integrate with popular voice assistants like 

Amazon Alexa and Google Assistant, allowing for 
voice control of your smart home devices.



  27Image source: https://hometechhacker.com/mqtt-home-assistant-using-docker-eclipse-mosquitto/ 

https://hometechhacker.com/mqtt-home-assistant-using-docker-eclipse-mosquitto/
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Options for Deploying HA
● Home Assistant OS: recommended installation method 

– A dedicated OS for HA that runs on SBCs such as RPi.

● Home Assistant Core + Supervised: 
– A manual installation of HAt on any Python-supported system.

● Home Assistant Container using Docker:
– A containerized installation of the HA using a Docker image 

from Docker Hub.
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Node-RED
● Node-RED is an open source, flow-based 

development tool for visual programming of home 
automation tasks.

● It provides a graphical user interface (GUI) for creating 
and managing flows using a drag-and-drop approach.

● Node-RED can be installed as an add-on in Home 
Assistant (for HA OS).
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Node-RED
● Node-RED supports a variety of communication 

protocols and standards used in smart home 
applications such as HTTPS, WebSocket and MQTT.

● Node-RED can be used with Home Assistant (HA), 
which is an open-source smart home platform, using 
WebSockets for communication.
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Firmware Options for Smart Home Devices

● Tasmota and ESPHome are both popular open-source 
firmware options for ESP8266 and ESP32-based 
devices, especially DIY projects.
– Tasmota: https://tasmota.github.io/docs/, 

https://github.com/arendst/Tasmota  
– ESPHome: https://esphome.io/index.html, 

https://github.com/esphome/esphome  

● Both software support  over-the-air (OTA) updates of 
firmware for ESP8266 and ESP32-based devices.

https://tasmota.github.io/docs/
https://github.com/arendst/Tasmota
https://esphome.io/index.html
https://github.com/esphome/esphome
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Tasmota vs. ESPHome
● Both Tasmota and ESPHome are not a standalone smart home 

platform but rather a tool for creating firmware for smart devices. 
It is often used in conjunction with platforms like Home 
Assistant.

● ESPHome utilizes the ESP-IDF framework and PlatformIO 
(PIO core) for building its firmware and YAML is used to define 
various settings and parameters for the ESPHome firmware.

● In contrast, Tasmota is based on the Arduino framework. The 
Tasmota firmware utilizes Arduino core libraries for the 
ESP8266 and ESP32 microcontrollers.
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Tasmota
● Tasmota is an open-source firmware designed 

primarily for Espressif's ESP8266 and ESP32-based 
devices, commonly used in smart home applications. 

● Tasmota devices can be controlled via:
– Web UI (https://tasmota.github.io/docs/WebUI/).

– HTTP / WebSockets, MQTT (Documentation and Serial port

https://tasmota.github.io/docs/WebUI/
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Tasmota
● Tasmota supports Over-the-Air (OTA) firmware 

updates, simplifying the process of keeping devices 
up to date.

● It supports integration with smart home or home 
automation platforms such as Home Assistant (HA).

● Documentation: 
– https://tasmota.github.io/docs/ 

https://tasmota.github.io/docs/
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Tasmota
● For ESP32 devices, the Tasmota source code 

utilizes the Arduino-ESP32 core v3.0.x+. 
● The following ESP32 device families are supported:

– Tensilica Xtensa based: ESP32, ESP32-S2, ESP32-S3
– RISC-V based: ESP32-C2, ESP32-C3, ESP32-C6, 

ESP32H2
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Tasmota Firmware Options
● There are two categories of pre-compiled 

firmware files (.bin).
– Initial firmware vs. OTA firmware (from the official 

OTA server).
– ESP8266: https://ota.tasmota.com/tasmota/release/
– ESP32: http://ota.tasmota.com/tasmota32/release/ 

https://ota.tasmota.com/tasmota/release/
http://ota.tasmota.com/tasmota32/release/
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Tasmota Firmware Options
● There are different Tasmota firmware variants 

(both initial and OTA firmware).
● Initial firmware .bin files for different ESP families:

– ESP32: tasmota32.factory.bin

– ESP32C3: tasmota32c3.factory.bin

– ESP32S3: tasmota32s3.factory.bin
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Tasmota Firmware Flashing
● The initial firmware can be flashed using ESPTool 

(a Python-based tool) developed by Espressif:

● Alternatively, Tasmota firmware can be flashed onto 
an ESP32 device via the Tasmota Web Installer.
– URL https://tasmota.github.io/install/

$ esptool.py write_flash 0x0 <tasmota32.factory.bin>

https://tasmota.github.io/install/
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Tasmota Firmware Flashing
● After the initial firmware has been flashed and the 

device is configured to connect to a Wi-Fi network, it 
can be updated with OTA firmware (over Wi-Fi).

● Tasmota's Device Template
– A template defines an ESP8266 or ESP32 device and how 

its GPIOs are assigned.
– Learn more about templates: 

https://tasmota.github.io/docs/Templates/ 

https://tasmota.github.io/docs/Templates/
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Tasmota Firmware Build
● Since Tasmota firmware is open source, users can 

configure and compile custom versions (for example, 
using a Docker container).
– Firmware Options: Choose between tasmota 

(for ESP8266) or tasmota32 (for ESP32).

– Customization: Modify features by editing the 
user_config_override.h file.

● Documentation:
–  https://tasmota.github.io/docs/Compile-your-build/ 

https://tasmota.github.io/docs/Compile-your-build/
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Tasmota Rules
● Tasmota supports rules that are used to trigger events 

and send MQTT messages, or trigger other rules or 
actions, enabling complex automation sequences.

● Example: 
– Turn on an air-conditioner when a temperature sensor 

reading exceeds 25°C and send an MQTT message to the 
MQTT broker when this happens.
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Tasmota Supported Devices Repository

2807 supported devices 
Last access: 2024-08-13
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Tasmota Device Setup
● Steps to do after flashing the Tasmota firmware to an 

ESP8266 / ESP32 device.
– Initial Wi-Fi Setup: Connect to the ESP32's Wi-Fi AP with the 

SSID: tasmota-XXXX where XXXX are hexadecimals.
● The default IP address of the device: 192.168.4.1.

– Wi-Fi Setting: Enter the SSID and password for the Wi-Fi network 
to be used and reset the device. 

– Device Configuration: Set the device template and other 
configurations. 
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Initial Wi-Fi Setup
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Tasmota Web Interface – the Main Menu page
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Tasmota Web Interface – Configuration Settings 
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Tasmota Device Template and GPIO Configuration
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User-defined GPIO Settings for ESP32C3 Device
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User-defined Settings for MQTT Broker
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Image Source: https://templates.blakadder.com/sonoff_BASICR4.html 

https://templates.blakadder.com/sonoff_BASICR4.html


  53

Tasmota – Matter Support

Image Source: https://tasmota.github.io/docs/Matter/ 

https://tasmota.github.io/docs/Matter/
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Key features of Tasmota
● To summarize, the following are key features of Tasmota:

– Open source and free
– Support for a wide variety of sensor modules
– Customization, flexibility and local control
– MQTT support
– OTA firmware support
– User-Friendly Web Interface
– Low-code or no-code feature customization
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