
010123131

Software Development Practice I

Handout #8

<rawat.s@eng.kmutnb.ac.th>

Last Update: 2024-08-05

 2

The MQTT Protocol

for IoT Applications

 3

Expected Learning Outcomes
● Setting up an MQTT broker on Linux:

– Environment Setup: Use an Ubuntu VM and an SBC.
– Installation: Install and run a Mosquitto MQTT broker on

Linux, either through a native installation or using a Docker
image. .

● MQTT client programming:
– MQTT Clients: Write Python, C/C++ and Arduino code for

message publication / subscription via MQTT.
– Testing: Use real Arduino boards and/or the Wokwi

simulator to demonstrate and test Arduino sketches.

 4

● MQTT = Message Queuing Telemetry Transport
– an open OASIS standard (since 2013) and an ISO

recommendation (ISO/IEC 20922) – an the most commonly
used messaging protocol for the Internet of Things (IoT).

– a lightweight publish / subscribe messaging transport
protocol for machine-to-machine (M2M) communication.

– widely used for messaging and data exchange between IoT
and Industrial IoT (IIoT) devices, such as embedded
devices, sensors, industrial PLCs, etc.

MQTT

 5

MQTT
● The MQTT protocol is used to connect devices based on

the publish / subscribe (pub/sub) pattern.
– The sender (publisher) and the receiver (subscriber)

communicate via topics.

– The connection between them is handled by the MQTT
broker, which filters and distributes incoming messages to
the subscribers.

● Unlike HTTP’s request / response paradigm, MQTT is
event-driven and the broker decouples the clients
(publishers and subscribers) from each other.

 6Image source: https://www.hivemq.com/blog/how-to-get-started-with-mqtt/

data producers

 data consumers

MQTT Publish/Subscribe Architecture

https://www.hivemq.com/blog/how-to-get-started-with-mqtt/

 7
Image source: https://mqtt.org

https://mqtt.org/

 8

MQTT Protocol Versions
● There are two versions of the specification: MQTT 3.1.1

and MQTT 5.
– Most commercial MQTT brokers now support MQTT 5 but

many of the IoT managed cloud services only support MQTT
3.1.1.

– It is highly recommended to use version 5 for new IoT
deployments due to the new features that focus on more
robust systems and cloud native scalability.

http://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

http://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

 9

Benefits of MQTT
● Lightweight and efficient to minimize resources required for

the client and network bandwidth and supports:
– Quality of Service (QoS) levels to support message reliability.

– Persistent sessions or connections between device and server
that reduces re-connection time required over unreliable networks.

– Message encryption with SSL/TLS protocols (v1.3 / v1.2 / v1.1)
and server / client authentication.

● Providing a good choice for wireless networks that experience
varying levels of latency due to occasional bandwidth
constraints or unreliable connections.

 10

Examples of MQTT Use Cases
● Smart home systems
● Smart farming and agricultural / precision farming
● Smart metering and billing systems
● Gathering ambient or environmental sensor data
● Machine health data monitoring for preventive maintenance
● Remote asset management
● Remote performance monitoring

 11

Oil & Gas Remote Asset Management
(Image source: https://www.hivemq.com/solutions/energy-solution-whitepaper/)

https://www.hivemq.com/solutions/energy-solution-whitepaper/

 12

MQTT Architecture
● The MQTT broker is responsible for dispatching messages between

senders and the receivers.
● A MQTT client publishes a message with a specific topic to the

broker and other MQTT clients can subscribe to the topics they want
to receive.

● The MQTT broker uses the topics and the subscriber list to dispatch
messages to appropriate clients and is able to buffer messages that
can’t be dispatched to MQTT clients that are not connected. This is
very useful for situations where network connections are unreliable.

● The protocol supports 3 different types of QoS messages:
0 - at most once, 1 - at least once, and 2 - exactly once.

 13

MQTT Clients
● There are open source libraries for MQTT clients

available in different computer languages.
– Eclipse Paho Library (C, Python, …)

● https://www.eclipse.org/paho/

– HiveMQ MQTT Client Library (Java)
● https://github.com/hivemq/hivemq-mqtt-client

– MQTT.js and Async-MQTT.js (Node.js)
● https://github.com/mqttjs
● https://github.com/mqttjs/async-mqtt

https://www.eclipse.org/paho/
https://github.com/hivemq/hivemq-mqtt-client
https://github.com/mqttjs
https://github.com/mqttjs/async-mqtt

 14Paho MQTT Client (v1.4) Comparison (Source: Eclipse.org)

 15

MQTT Clients
● Open Source Arduino Libraries

– MQTT Library (by Joel Gaehwiler)
● https://www.arduino.cc/reference/en/libraries/mqtt/

– PubSubClient (by Nick O'Leary)
● https://github.com/knolleary/pubsubclient

– Async MQTT Library (for ESP8266 / ESP32)
● https://github.com/marvinroger/async-mqtt-client

– AsyncMQTT_Generic Library (by Marvin Roger & Khoi Hoang)
● https://github.com/khoih-prog/AsyncMQTT_Generic

– Adafruit MQTT Library
● https://github.com/adafruit/Adafruit_MQTT_Library

https://www.arduino.cc/reference/en/libraries/mqtt/
https://github.com/knolleary/pubsubclient
https://github.com/marvinroger/async-mqtt-client
https://github.com/khoih-prog/AsyncMQTT_Generic
https://github.com/adafruit/Adafruit_MQTT_Library

 16

GUI-based MQTT Clients
● Examples of GUI-based MQTT Client Apps:

– MQTT Explorer (free, open source)
● https://github.com/thomasnordquist/MQTT-Explorer

● https://mqtt-explorer.com/

– MQTTBox
● https://github.com/workswithweb/MQTTBox

– MQTT Web Client
● https://mqttx.app/

https://github.com/thomasnordquist/MQTT-Explorer
https://mqtt-explorer.com/
https://github.com/workswithweb/MQTTBox
https://mqttx.app/

 17

MQTT Brokers
● Examples of open source MQTT brokers:

– Eclipse Mosquitto
● https://github.com/eclipse/mosquitto

– HiveMQ Community Edition
● https://github.com/hivemq/hivemq-community-edition

– ...

https://github.com/eclipse/mosquitto
https://github.com/hivemq/hivemq-community-edition

 18

Public MQTT Brokers
● Examples of public MQTT brokers:

– Mosquitto Broker
● https://test.mosquitto.org/

– HiveMQ Broker
● http://broker.hivemq.com/

– EMQX Broker
● https://www.emqx.com/en/mqtt/public-mqtt5-broker

https://test.mosquitto.org/
http://broker.hivemq.com/
https://www.emqx.com/en/mqtt/public-mqtt5-broker

 19

MQTT Sessions
● An MQTT session is divided into four stages: connection,

authentication, communication and termination.
● A client starts by creating a TCP/IP connection to the broker

by using either a standard port or a custom port defined by
the broker's operators.

● During the communication phase, a client can perform
publish, subscribe, unsubscribe and ping operations.

● When creating the connection, it is important to recognize
that the server might continue an old (persistent) session
if it is provided with a reused client identity.

 20

Encryption and Authentication
● The standard ports are 1883 for non-encrypted

communication and 8883 for encrypted communication.
– using Secure Sockets Layer (SSL) / Transport Layer Security (TLS).

● During the SSL/TLS handshake, the client validates the
server certificate and authenticates the server.

● The client may also provide a client certificate to the broker
during the handshake. The broker can use this to authenticate
the client.

 21

MQTT Control Packets

 22

MQTT Control Packets

 23

MQTT Messages
● Each MQTT message consists of a fixed header (2 bytes),

an optional variable header, a message payload that is
limited to 256 megabytes of data (called Binary Large
Object or BLOB) and a QoS level.

 24

Topic-based Message Routing
● Topic is a hierarchical structured string, like:

– chat/room/1
– sensor/10/temperature
– sensor/+/temperature
– $SYS/broker/metrics/#

● A forward slash (/) is used to separate levels within a topic tree
and provide a hierarchical structure to the topic space.

● The number sign (#) is a wildcard for multi-level in a topic.

● The plus sign (+) is a wildcard for single-level.

 25MQTT publication and subscription (Image source: HiveMQ)

 26
Image source; https://en.wikipedia.org/wiki/MQTT

Example of an MQTT connection
(QoS 0) with connect, publish /
subscribe, and disconnect.

https://en.wikipedia.org/wiki/MQTT

 27Image source: https://emqx-enterprise-docs-en.readthedocs.io/en/latest/mqtt.html

QoS 0

https://emqx-enterprise-docs-en.readthedocs.io/en/latest/mqtt.html

 28Image source: https://emqx-enterprise-docs-en.readthedocs.io/en/latest/mqtt.html

QoS 1

https://emqx-enterprise-docs-en.readthedocs.io/en/latest/mqtt.html

 29
Image source: https://emqx-enterprise-docs-en.readthedocs.io/en/latest/mqtt.html

QoS 2

https://emqx-enterprise-docs-en.readthedocs.io/en/latest/mqtt.html

 30

MQTT Ports
● Plain MQTT (default port: 1883)

● Plain MQTT with client authentication
– Username / password protected

● MQTT over TLS (default port: 8883)

● MQTT over TLS with client certificate

● MQTT over WebSockets (default port: 9001)

● MQTT over WebSockets with TLS

 TLS = Transport Layer Security

 31

 Mosquitto Servers for Testing
● 1883 : MQTT, unencrypted, unauthenticated
● 1884 : MQTT, unencrypted, authenticated
● 8883 : MQTT, encrypted, unauthenticated
● 8884 : MQTT, encrypted, client certificate required
● 8885 : MQTT, encrypted, authenticated
● 8886 : MQTT, encrypted, unauthenticated
● 8887 : MQTT, encrypted, server certificate deliberately expired
● 8080 : MQTT over WebSockets, unencrypted, unauthenticated
● 8081 : MQTT over WebSockets, encrypted, unauthenticated
● 8090 : MQTT over WebSockets, unencrypted, authenticated
● 8091 : MQTT over WebSockets, encrypted, authenticated

Source: https://test.mosquitto.org/

https://test.mosquitto.org/

 32

Installation of Mosquitto (MQTT) client package on Ubuntu:

Show the version of the Mosquitto client commands:

 33

Subscribe messages for a topic at test.mosquitto.org using port 1883.

Publish a message to test.mosquitto.org using port 1883.

Run commands with the -d option

 34

Online Client Certificate Generator

https://test.mosquitto.org/ssl/

https://test.mosquitto.org/ssl/

 35

Subscribe messages for a topic at test.mosquitto.org using port 8883 or 8884.

Publish a message to test.mosquitto.org using port 8884.

 36

 37

Subscribe messages for a topic at broker.emqx.io using port 8883.

Publish a message to broker.emqx.io using port 8883.

Publish a message to test.mosquitto.org using port 8885.

 38

 39

Running Mosquitto MQTT broker Under Docker

● Mosquitto is an open-source message broker that
implements the MQTT protocol.

● It is widely used for publish / subscribe messaging
in a variety of applications.

● Mosquitto supports MQTT protocol v3.1/3.1.1 and 5.0.
● An official Eclipse Mosquitto Docker image is available

on Docker Hub.

 40

Pull the latest Docker image for Eclipse Mosquito.
$ docker pull eclipse-mosquitto:latest
Create a local Mosquitto directory.
$ mkdir -p ~/.mosquitto
Create and edit the local configuration file.
$ nano ~/.mosquitto/mosquitto.conf

allow_anonymous true
listener 1883
listener 9001
protocol websockets

persistence true
persistence_location /mosquitto/data/
log_dest file /mosquitto/log/mosquitto.log

 41

Create and start a new container (named 'mosquitto')
to run eclipse-mosquitto in detached mode.
$ docker run -d -p 1883:1883 -p 9001:9001 \
 --name="mosquitto" \
 -v ~/.mosquitto/mosquitto.conf:/mosquitto/config/mosquitto.conf \
 -v /mosquitto/data \
 -v /mosquitto/log \
 eclipse-mosquitto:latest

Note: There are 3 directories used for Mosquitto configuration, persistent
storage and logs.

● /mosquitto/config
● /mosquitto/data
● /mosquitto/log

How to use Docker Compose for Mosquitto
see: https://github.com/sukesh-ak/setup-mosquitto-with-docker or
https://cedalo.com/blog/mosquitto-docker-configuration-ultimate-guide/

https://github.com/sukesh-ak/setup-mosquitto-with-docker
https://cedalo.com/blog/mosquitto-docker-configuration-ultimate-guide/

 42

Create and run a container from the eclipse-mosquitto image
and run the mosquitto_pub command inside the container.
Remove the container when it exits.
$ docker run -it --rm eclipse-mosquitto \
 mosquitto_pub -d -h raspberrypi -p 1883 \

 -t test/topic -m "Hello Mosquitto!"

Running Mosquitto MQTT Client Under Docker

 43

Arduino-ESP32 Simulation using WokWi Simulator

 44

Arduino-ESP32 Simulation using WokWi Simulator

 45Image source: https://randomnerdtutorials.com/

https://randomnerdtutorials.com/

 46

Create a new MQTT broker connection

 47

Specify a topic for subscription

 48

 49

 50

MQTT Topic Subscription
using MQTT Explorer

 51

Arduino & MQTT
● Many Arduino-compatible boards have built-in WiFi

capabilities, making them ideal for connecting to MQTT brokers.
● Examples of such boards include:

– Espressif ESP32, ESP32-S2/S3, ESP32-C3/C6 SoC boards
– Arduino Uno R4 and compatible boards
– Raspberry Pi Pico W

● Arduino Libraries for MQTT clients are also available such as:
– Arduino PubSubClient library (v2.8)

 52

Make sure that you have installed the latest version
of Arduino Core for ESP32 in the Arduino IDE 2.x.

 53Add the Board Manager URL for the Arduino ESP32 Core.

 54

https://espressif.github.io/arduino-esp32/package_esp32_dev_index.json

https://espressif.github.io/arduino-esp32/package_esp32_dev_index.json

 55

Make sure you have selected the correct ESP32 target board
and serial port before starting the build and upload steps.

 56

Arduino-ESP32-MQTT-Client Demo

 57

MQTT Topic Subscription
using MQTT Explorer

 58

MQTT Topic Subscription using Mosquitto Client for Ubuntu

 59

Code Listing

 60

Code Listing

 61

Code Listing

 62

Code Listing

 63

Code Listing

 64

Wemos Lolin32 Lite Board

 65

 66

MakerGo ESP32 SuperMini

 67

 68

 Tandem MCU Board: ESP32 and ESP32C3

 69

Arduino Uno R4 Compatible Board

Renesas RA4M1

ESP32S3

 70

Raspberry Pi Pico-W Board

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

