
  1

010123131

Software Development Practice

Handout #7

<rawat.s@eng.kmutnb.ac.th>

Last Update: 2024-07-22



  2

Basic Linux Commands

Linux Shells

Shell Scripting

Bash Shell Programming



  3

Terminal, Shell, Shell Script
● Terminal

● A terminal is a peripheral (hardware) that interfaces with a human,
it is composed of I/O such as a screen and a keyboard.

● A terminal is a window (software) that holds a shell (or a command line 
interpreter or CLI). 

● Shell
● A shell, also known as terminal, console, command prompt and many others, 

is a computer program intended to interpret commands.
● The main purpose of a shell is to allow the user to interact with the OS.

● A Linux terminal is a text-based interface used to control a Linux computer. 



  4

Terminal, Shell, Shell Script
● A shell script is a text file that contains a sequence of commands 

for interacting with an OS such Unix and Linux.
● A shell script is a computer program designed to be run by a shell 

or a command-line interpreter.
● A shell script is a text-based file containing one or more commands 

that the user would type on the command line for specific tasks.



  5

Shell Scripting
● Shell programming, usually referred to as shell scripting, allows for 

task automation for ease of use, reliability, and reproducibility.

● Shell scripting provides an easy way to carry out tedious commands, 
large or complicated sequence of commands, and routine tasks.

● perform daily tasks efficiently and schedule them for automatic execution.
● set certain scripts to execute on startup such as showing a particular 

message on launching a new session or setting certain environment 
variables.



  6

Unix Shells
● Every modern OS has one or more shells as part of the system.

● In Unix, there are different shells such as the Bourne shell (sh), 
the C shell (csh), the Korn shell (ksh) and the Bash shell.

● The Bourne Shell (sh) was originally developed by Stephen Bourne while 
working at Bell Labs.

● The Bourne Again Shell (bash) was written as a free and open source 
replacement for the Bourne Shell.

● Bash is succeeded by Bourne shell (sh) and has been adopted as 
the default shell on most Linux distributions as well as macOS.



  7

Bash Shell
● In a Linux Bash shell, the first character is often a dollar sign ($) 

to indicate the shell prompt waiting for a command from the user.

● If the user is root, the dollar sign will be replaced by the pound key (#).

● Check which shell is used by executing the following command: 

$ echo $SHELL
● If a user has logged-in in a terminal, the Bash script file ~/.profile 

in the user's home directory is executed automatically by a Bash shell.

● The tilde symbol (~) represents and expands to the home directory of the 
current user, which is the same as the environment variable $HOME.



  8

The ~/.bashrc File
● The ~/.bashrc file is a Bash script that is loaded whenever a user opens a new 

terminal session. 

● Environment variables in this file are executed whenever a new session is started.

● You can add one or mode Bash commands:

Example:  PATH="$HOME/.local/bin/:$PATH"
● You can reload the .bashrc file with the following command

$ source ~/.bashrc

● Examples of system-wide files (for all users):
● /etc/profile

● /etc/bash.bashrc

● /etc/environment



  9

Shell Prompt
● Bash keeps a list of directories in which it should look for commands 

in an environment variable called PATH.

● The default shell prompt, it is composed by

   username@hostname:location$

   username: the username of the current user who has logged in

   hostname: the name of the system 

location: the current working directory 

$: the end of prompt.



  10
https://manpages.ubuntu.com/manpages/bionic/man2/uname.2.html 

https://manpages.ubuntu.com/manpages/bionic/man2/uname.2.html


  11



  12
https://manpages.ubuntu.com/manpages/bionic/man1/lsb_release.1.html 

https://manpages.ubuntu.com/manpages/bionic/man1/lsb_release.1.html


  13

Superuser Account
● root is the user name or account that by default has access to all 

commands and files on a Linux or other Unix-like operating system. 
● The root user (also referred to as a superuser or root) has all the 

rights that are necessary to perform administrative tasks or access 
some files, execute privileged commands, and much more.

● The home directory of the root is /root. 



  14

 Privileged vs. Root User
● The su command allows you to switch the user to someone else by 

providing its username. This command requires the root password. 
● The sudo command allows a user belonging to the sudo group to 

run a command as root. This requires the user password.

# Make a new shell login as root. 
# Note: Use the exit command to exit the shell after login.
# Method 1) This requires the root’s password.
$ su -
# Method 2) This requires the user’s password.
$ sudo su -
# or
$ sudo -i



  15

Linux Built-in Commands
man display the user manual or man pages of a Linux command. 
ls    list files or directories in Linux file system.
type  find out whether it is built-in or external binary file.
mkdir create or make new a directory.
cd    change the current working directory.
pwd   get the current working directory.
grep  search text and strings in a given file or standard input stream.
cat   create single or multiple files, view content of a file,

concatenate files and redirect output in terminal or files.
which locate the executable files or location of a program from file system.



  16

Linux Built-in Commands
locate find files in the Linux file system using the specific file name.
echo   display line of text/string that are passed as an argument.
rm  delete files or directories.
touch  create new files by giving file names as the input, or change 

and modify timestamps of a file.
stat   give information about the file and file system (such as the size 

of the file, access permissions and the user ID and group ID,...).
file   determine the type of a file and its data.
readelf display information about one or more ELF format object files.
alias create a custom shortcut used to represent a command.
unalias remove an alias specified as an argument.



  17

The rm command

rm -i Ask before deleting each file. 

rm -r Delete recursively a directory and all its contents.

Normally, rm will not delete directories, while rmdir 

will only delete empty directories.

rm -f Force delete files without asking.



  18

Demo: Execution of Commands
# create a new directory with a subdirectory.
$ mkdir -p ~/test/subdir/

# create an empty file.
$ touch ~/test/subdir/file-1.txt

# create a text file with a single-line text.
$ echo "Hello world!" >> ~/test/subdir/file-2.txt

# list all files and directories under ~/test/
$ ls -lr ~/test/*

# find all files with a .txt file extension under ~/test
$ find ~/test -name *.txt -type f
# remove the directory '~/test/' recursively. 
$ rm -fr ~/test



  19

$ echo "${BASH_VERSION}"
$ bash --version | grep -i "version"

Bash Version

To get the bash version number:

$ bash --version | head -n 1

GNU bash, version 5.1.16(1)-release (x86_64-pc-linux-gnu)



  20

Environment & Shell Variables

$HOSTNAME

$HOSTTYPE

$HOME

$LANG

$TERM

$SHELL

$DISPLAY

$PATH

Examples of shells variables for Linux:

● A shell variable is a variable that is available only 
to the current shell. In contrast, an environment 
variable is available system wide and can be used 
by other applications on the system.

● The echo command can be used to display values 
of shell variables and environment variables in 
Linux.



  21

Environment & Shell Variables

$ env
$ printenv
$ declare -xp

To list all the environment variables in Linux:



  22

Set and Unset Variables

# set a session variable to a string value
$ MESSAGE="Hello World!"

# or set an environment variable
$ export MESSAGE="Hello World!"

# print the value of the variable
$ echo $MESSAGE

# unset the variable
$ unset MESSAGE

# search the variable
$ set | grep MESSAGE
$ printenv | grep MESSAGE



  23

Question
What are the outputs of the following commands?

$ type ls

$ alias ll

$ file ~/.profile

$ which bash

$ type bash

$ whatis `which bash`

$ readelf -h `which bash`

$ echo $PATH

$ echo $PATH | tr ':' '\n'

$ echo $PATH | tr ':' '\n' | sort



  24

Nano Editor
● nano is a lightweight terminal editor.
● It has been installed by default. 

● If not, run the following command to install the nano program.
$ sudo apt install nano -y

● To use the nano editor, run the following command
$ nano <text file>

● To make a bash script file executable and then run the script:

   $ chmod +x <file.sh>
$ ./<file.sh>

The caret or hat (^) preceding the command letter means you should hit CTRL first, 
followed by the key of your choice, say [X], to quit.



  25

Bash Script: Example 1
#!/usr/bin/env bash

echo "Run script: $0" # show the bash script name
echo "The number of arguments: $#"
if [ $# -eq 0 ]; then # no argument is passed.
   exit 1 # exit the script with 1.
else
   for arg in "$@"  # for each of arguments
   do
     if [ ! $arg == "" ] ; then # not empty.
       echo "$arg"
     else
       echo "This argument is an empty string."
     fi
  done
fi

$ bash ./ex-1.sh a b c d e

Run script: ./ex-1.sh
The number of arguments: 5
a
b
c
d
e



  26

Bash Script Arguments

$0 the name and fullpath of the script executed in the terminal.

$1,$2,... the positional arguments passed to the script.

$# the number of positional arguments passed to the script.

$@ the positional arguments list.

$? the variable that can be used to determine whether 

a command or script has executed successfully.

0=ok, 1=error



  27

Bash Script: Example 2
#!/usr/bin/env bash

echo "Run script: $0"

echo "The number of arguments: $#"
if [ $# -eq 0 ]; then
    exit 1
else
    num_args=$#
    for ((i=1; i<=${num_args}; i++)); do
        echo "arg ${i}:"  \'$"${!i}"\'
    done
fi

$ bash ./ex-2.sh 1 2 3 a "hello"

Run script: ./ex-2.sh
The number of arguments: 5
arg 1: '1'
arg 2: '2'
arg 3: '3'
arg 4: 'a'
arg 5: 'hello'



  28

Bash Script: Example 3
#!/usr/bin/env bash

if [ $# -ne 1 ] ; then
   exit 1 # only one argument is expected.
fi
case $1 in
   0)
     echo "The argument is 0 (zero)."
     ;;
   [1-9]|10)
     echo "The argument is between 1 and 10."
     ;;
   *)
     echo "others"
     ;;
esac



  29

Bash Script: Example 4
#!/usr/bin/env bash

x=1
if [ $x -eq $x ]  ; then echo "equal"; fi
if test $x -eq $x ; then echo "equal"; fi
if (($x == $x))   ; then echo "equal"; fi
test $x -eq $x && echo "equal"

! test $x -ne $x  && echo "equal"
[[ ! $x -ne $x ]] && echo "equal"



  30

Bash Script: Example 5
#!/usr/bin/env bash

x="1 "
if [[ $x -eq 1 ]]     ; then echo "x is equal to 1."; fi
if [[ "$x" -eq "1" ]] ; then echo "x is equal to 1."; fi

echo "$x-1"
echo "$((x-1))"
# Note: Anything inside $((...)) is considered to be 
# an arithmetic operation.

$ bash ./ex-5.sh 

x is equal to 1.
x is equal to 1.
1 -1
0



  31

Brackets and Parentheses
● Double Square Brackets or [[ ]] for bash conditional expressions 

(e.g. string conditionals, pattern matching and file tests)

● Double Parentheses or (( )) for arithmetic expressions and 
conditionals

● Single Square Brackets or [ ] similar to the POSIX test command. 
It is an alternative command for the test built-in command.



  32

Bash Script: Example 6
#!/usr/bin/env bash

count=0            # set the count variable to 0
count=$((count+1)) # increment the count variable by 1

# while loop
while [ "$count" -le 5 ] ; do # if less than or equal to 5
   echo "The value of \$count is $count."
   let "count += 1"
done

$ bash ./ex-6.sh 
The value of $count is 1.

The value of $count is 2.

The value of $count is 3.

The value of $count is 4.

The value of $count is 5.



  33

Bash Script: Example 7
#!/usr/bin/env bash

for i in {1..10}
do
   echo "The value of \$i is $i."
   if [ $i -eq 5 ]
   then
      break
   fi
done

$ bash ./ex-7.sh 
The value of $i is 1.

The value of $i is 2.

The value of $i is 3.

The value of $i is 4.

The value of $i is 5.



  34

Bash Script: Example 8
#!/usr/bin/env bash

# check whether the wget command is available.
# if not, install the wget package.
if command -v wget &>/dev/null; then
  echo "The wget package is already installed."
else
  echo "Installing the wget package..."
  sudo apt update && sudo apt install -y wget
fi



  35

#!/usr/bin/env bash

result=`which wget`
if [ $? -eq 0 ]; then
  echo "The package is already installed."
else
  echo "The package is not installed"
fi

#!/usr/bin/env bash

result=$(which wget)
if [ ! -z $result ]; then
  echo "The package is already installed."
else
  echo "The package is not installed"
fi



  36

Bash Script: Example 9
#!/usr/bin/env bash

# create a function that can be used to check
# whether a command does exist.
command_exists () {
  command -v "$@" > /dev/null 2>&1
}
# get the code name of Ubuntu
if [ -z $(command_exists lsb_release) ] ; then
  codename=$(lsb_release --codename | cut -f2)
  echo "The Ubuntu code name is $codename."
else
  echo "Cannot determine the code name of Ubuntu..."
fi



  37

Bash Script: Example 10
#!/usr/bin/env bash

# note: $RANDOM returns a random integer between 0..32767.
# create a random integer number between -10..+10.
let "x = $RANDOM % 21 - 10"
if [ "$x" -gt 0 ] ; then
  echo "$x is positive."
elif [ "$x" -eq 0 ] ; then
  echo "$x is zero."
elif [ "$x" -lt 0 ] ; then
  echo "$x is negative."
fi
# conditional executions
[[ $x -eq 0 ]] && echo "$x is zero."
[[ $x -ne 0 ]] && echo "$x is nonzero."



  38

Bash Script: Example 11
#!/usr/bin/env bash

unset x
# note: x is unset and it will be expanded to an empty string.
[[ -v x ]] ; echo "The result is $?."
if [[ ! $x ]] ; then echo "x is an empty string or not set." ; fi

x="" # x is set as an empty string.
[[ -v x ]] ; echo "The result is $?."
if [[ ! $x ]] ; then echo "x is an empty string or not set." ; fi

x="hello"
[[ -v x ]] ; echo "The result is $?."
if [[ ! $x ]] ; then echo "x is an empty string or not set." ; fi



  39

Bash Script: Example 12
#!/usr/bin/env bash

FILENAME=tmp-$(date +"%a-%d-%b-%Y-%k-%M-%S-%Z").txt
# create an empty file using the specified filename.
touch $FILENAME
# check if a file exists.
if [ -e "$FILENAME" ] ; then
    echo "$FILENAME exists."
else
    echo "$FILENAME does not exist."
fi
# remove the file
rm -f $FILENAME



  40

Bash Script: Example 13
#!/usr/bin/env bash

# calculate 2 to the power of i, i=0...10
for i in {0..10}; do
   echo "2^i = $((1 << i))"
done



  41

Bash Script: Example 14
#!/usr/bin/env bash

# generate a hex string of random data of 32 bytes
n=32
RAND=$(hexdump -n ${n} -v -e '/1 "%02X"' /dev/urandom)
echo $RAND

$ for i in {1..5} ; do bash ./ex-14.sh; done

A91DF21678E8A307802E3C3E0563DCB31A7E6C3CE573B25A1C51FB0C8721ED1F
9A26672A5BC1AC8B1BC6B694EAFB0BF41DAEC5747A1CC22E7CE9E69834BA1BB4
DED111A3614C7CE86EEE58EE8C3C42F49A9E55AB3DF98087FA24E2D6B7D75D90
0209AD21450F491DD7E5FFA4852902E881141CFDB0B6C90D7356D20A39840014
B7FE2B09A1D0981795E14EF268372D5D3DC0C1F0D3211DED28CF8E65B54E4B2D



  42

Bash Script: Example 15
#!/usr/bin/env bash

answers="yes,no,ok,Yes,NO"

# split the string into an array (use ',' as the delimiter)
answers=($(echo $answers | tr ',' "\n"))
for ans in ${answers[@]} ; do
  case "$ans" in
     "yes")  echo "Yes" ;;
      "no")  echo "No"  ;;
         *)  echo "Invalid choice" ;;
  esac
done



  43

Bash Script: Example 16
#!/usr/bin/env bash

DIRNAME="/etc/apt/"; FILENAME="sources.list"
FULL_NAME="${DIRNAME}${FILENAME}"

get_num_lines() { wc -l "${FULL_NAME}" | cut -d ' ' -f1 ; }

if [ -d "${DIRNAME}" ]; then # if the directory exists.
   # check whether the file specified by its full name exists.
   if [ ! -f "${FULL_NAME}" ]; then
      echo "${FULL_NAME} doesn't exist."
   else
      num_lines="$(get_num_lines)"  # execute the command
      echo "'${FULL_NAME}' has ${num_lines} lines."
   fi
else
   echo "${DIRNAME} doesn't exist."
fi



  44

Bash Script: Example 17
#!/usr/bin/env bash

echo "Host: $(hostname)" # show the $HOSTNAME environment
echo "Date: $(date)" # show the $DATE environment
echo "DateTime: $(date +%Y-%m-%d_%H:%M:%S)"

dns_servers=("8.8.8.8" "9.9.9.9" "4.4.4.4")
n="${#dns_servers[@]}"
for ((i=0; i < $n; i++)); do
    remote="${dns_servers[$i]}"
    echo ">> ping $remote"
    result=`ping "$remote" -c 3 | tail -n 2`
    readarray lines < <(echo -n "$result")
    for line in "${lines[@]}"; do
        printf ">> %s" "$line"
    done
    printf "\r\n"
done
echo "done..."



  45

Sample Output
$ bash ./ex-16.sh

Host: ubuntu-desktop-vm
Date: Tue Aug  8 08:14:09 +07 2023
DateTime: 2023-08-08_08:14:09
>> ping 8.8.8.8
>> 3 packets transmitted, 3 received, 0% packet loss, time 2005ms
>> rtt min/avg/max/mdev = 67.496/82.004/89.728/10.266 ms
>> ping 9.9.9.9
>> 3 packets transmitted, 3 received, 0% packet loss, time 2004ms
>> rtt min/avg/max/mdev = 27.680/68.063/104.707/31.557 ms
>> ping 4.4.4.4
>> 3 packets transmitted, 0 received, 100% packet loss, time 2053ms
done...



  46

Bash Script: Example 18
#!/usr/bin/env bash

INSTALL_PKGS=""

if [ ! -x /usr/bin/curl ]; then
    INSTALL_PKGS="${INSTALL_PKGS} curl"
fi

if [ ! -x /usr/bin/wget ]; then
    INSTALL_PKGS="${INSTALL_PKGS} wget"
fi

if [ "X${INSTALL_PKGS}" != "X" ]; then
    echo "Installing packages: ${INSTALL_PKGS}..."
    sudo apt-get update
    sudo apt-get install -y ${INSTALL_PKGS} > /dev/null 2>&1
else
    echo "No packages to be installed.."
fi



  47

Bash Script: Example 19
#!/usr/bin/env bash

TAR_FILENAME="gedit-40.0.tar.xz"
SHA256SUM_FILENAME="gedit-40.0.sha256sum"
if [ ! -f "${SHA256SUM_FILENAME}" ] ; then
   echo "The SHA256SUM file doesn't exist..."
   exit 1
fi

check_sha256sum() {
   SHA256SUM_OUTPUT=$(sha256sum "${TAR_FILENAME}" | cut -d' ' -f1)
   if [ "$CKSUM" = "$SHA256SUM_OUTPUT" ] ; then
      echo "0"
   else
      echo "1"
   fi
}
readarray lines < <(cat "${SHA256SUM_FILENAME}")
# Code continues on the next page...



  48

Bash Script: Example 19 (cont’d)
num_lines=${#lines[@]}
for ((i=0; i < ${num_lines}; i++)); do
   args=(${lines[$i]})
   if [ ${#args[@]} -eq 2 ]; then
      CKSUM=${args[0]}; FILENAME=${args[1]}
      if [ "$FILENAME" = "$TAR_FILENAME" ]; then
          printf "File name: %s\n" "$FILENAME"
          printf "SHA256SUM: %s\n" "$CKSUM"
          retval=$(check_sha256sum)
          if [ $retval -eq  0 ] ; then
              echo "Checksum OK"
          else
              echo "Checksum FAILED"
          fi
          break
      fi
   fi
done



  49

Using wget and sha256sum 
# install wget and sha256sum
$ sudo apt install wget -y
$ sudo apt install hashalot -y

# download Gedit source code file and checksum file
$ mkdir -p $HOME/gedit-src && cd $HOME/gedit-src/
$ URL="https://download.gnome.org/sources/gedit/40"
# download the source code file (.tar.xz)
$ wget -c "${URL}/gedit-40.0.tar.xz"

# download the SHA256 checksum file
$ wget -c "${URL}/gedit-40.0.sha256sum"
# compute the SHA256 checksum for source code file
$ sha256sum ./gedit-40.0.tar.xz
0e8aac632b8879a57346aaf35c66f7df40c3fd5ea37a78e04ea218e41e3984e9  gedit-40.0.tar.xz


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

