การเขียนโค้ด Arduino Sketch และจำลองการ ทำงานสำหรับ ATtiny85 (8-bit Microcontroller)

- เรียนรู้การใช้ภาษา C/C++ ภายใต้บริบทการใช้งานวงจรดิจิทัล-อิเล็กทรอนิกส์
- เรียนรู้ตัวอย่างเขียนโค้ด Arduino Sketch ด้วยภาษา C/C++ สำหรับชิป ATtiny85 ซึ่งเป็นไมโครคอนโทรลเลอร์ขนาดเล็ก
- ฝึกต่อวงจรเสมือนจริงจำลองการทำงาน และตรวจสอบความถูก ต้องเบื้องตัน โดยใช้ซอฟต์แวร์ฟรี (AUTODESK Tinkercad Circuits)
- ทดลองต่อวงจรจริงบนเบรดบอร์ด และอัปโหลดโปรแกรมไปยังชิป ไมโครคอนโทรลเลอร์

IoT Engineering Education @KMUTNB

First Release: 2019-10-10 Last Update: 2022-06-10

แนะนำไมโครคอนโทรลเลอร์ ATtiny85

- เป็นชิปไมโครคอนโทรลเลอร์ในตระกูล ATtiny (TinyAVR) ของบริษัท Atmel / Microchip
- ภายในมีซีพียูขนาด 8 บิต และมีสถาปัตยกรรมแบบ RISC
- มีหน่วยความจำภายใน (ค่อนข้างน้อยมาก) SRAM 512 ไบต์
 Flash 8 กิโลไบต์ (KB) และ EEPROM 512 ไบต์
- ใช้ตัวถังของไอซีที่มีเพียง 8 ขา เช่น ตัวถังแบบ DIP-8
- มีตัวสร้างสัญญาณ Clock ภายใน (internal oscillator) ที่มีความถี่ 8 MHz
- สามารถเขียนโค้ด-จำลองการทำงานร่วมกับวงจรอิเล็กทรอนิกส์ ได้ โดยใช้ AUTODESK Tinkercad – Circuits
- รองรับการเขียนโค้ด โดยใช้ชุดคำสั่ง (API) ของ Arduino

ไมโครคอนโทรลเลอร์ ATtiny85

- ATtiny85 มีราคาไม่แพง (~50 บาท) ขนาดเล็ก
- ใช้ตัวถังแบบ **DIP-8** สามารถนำไปเสียบลงบนเบรดบอร์ดได้
- สามารถใช้ตัวสร้างสัญญาณ Clock ภายใน โดยไม่ต้องต่อ วงจร Crystal Oscillator ภายนอก (ไม่ต้องใช้ขา XTAL1 / XTAL2)
- เลือกใช้ความถี่ เช่น 1 MHz, 8 MHz หรือ 16 MHz ได้
 - ถ้าใช้ความถี่ 16 MHz จะต้องใช้แรงดันไฟเลี้ยง 5V
 - ถ้าใช้ความถี่ 1 MHz หรือ 8 MHz สามารถเลือกใช้แรงดัน ไฟเลี้ยง 3.3V หรือ 5V ได้

คุณสมบัติโดยสรุปเกี่ยวกับ ATtiny85

	Parametrics		
	Name	Value	
ชนิดข้อมูล —	Program Memory Type	Flash	
	Program Memory Size (KB)	8	•
ความเร็วของซีพียู —	CPU Speed (MIPS/DMIPS)	20	
(สูงสุด)	SRAM (bytes)	512	•
ขนาดหน่วยความจำ	Data EEPROM/HEF (bytes)	512	
EEPROM	Digital Communication Peripherals	1-SPI, 1-I2C	•
จำนวนสัญญาณ —	Capture/Compare/PWM Peripherals	5PWM	
PWM	Timers	2 x 8-bit	•
จำนวนวงจรเปรียบ —	Number of Comparators	1	
เทียบแรงดันไฟฟ้า	Temperature Range (°C)	-40 to 85	•
ช่วงแรงดันไฟเลี้ยง —	 Operating Voltage Range (V) 	1.8 to 5.5	
	Pin Count	8	•

https://www.microchip.com/wwwproducts/en/ATtiny85

ตำแหน่งขาของ ATtiny85 (PinOut)

ขาหมายเลข 1 ตรงกับ PB5 ปรกติจะถูก ใช้เป็นขา /RESET และใช้สำหรับ ISP Programmer ในการโปรแกรมชิป ดังนั้นจึงไม่นิยมใช้เป็นขา I/O ทั่วไป ขา Digital I/Os ได้แก่ PB0..PB5 ขา Analog Inputs ได้แก่ ADC0 .. ADC3

Pinout ATtiny25/45/85

NOTE: TSSOP only for ATtiny45/V

http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2586-AVR-8-bit-Microcontroller-ATtiny25-ATtiny45-ATtiny85_Datasheet.pdf

ตัวอย่างที่ 1: LED Blink (Circuit View)

ตัวอย่างที่ 1: LED Blink (Component List)

รายการอุปกรณ์สำหรับวงจรในตัวอย่างที่ 1	
(ไม่รวมเบรดบอร์ดและสายไฟ)	

TIN KER CAD	attiny85_led_blink				All changes saved		
Com	ponent List					ē, [ownload CSV
	Name	Quantity	Component				
	U1	1	ATtiny				
	P2	1	5 , 5 Power Supply				
	D1	1	Red LED				
	R1	1	470 Ω Resistor				

ตัวอย่างที่ 1: LED Blink (Code)

มุมมองการเขียนโค้ดด้วยการต่อบล็อก (Block-based Coding)

ี มุมมองการเขียนโค้ดด้วย ภาษาคอมพิวเตอร์ <mark>C/C++</mark>


```
void setup() {
  pinMode( 0, OUTPUT );
}
void loop() {
  digitalWrite( 0, HIGH );
  delay(100);
  digitalWrite( 0, LOW );
  delay(100);
}
```

การต่อวงจรเพื่อทดลองด้วยฮาร์ดแวร์จริง

รายการอุปกรณ์ (สำหรับตัวอย่าง LED Blink)

- เบรดบอร์ด
- ไอซี ATTiny85
- หลอด LED (Red) ขนาด 5 มม.
- ตัวต้านทาน 470 โอห์ม สำหรับต่ออนุกรมกับ LED
- อุปกรณ์ USB ISP Programmer
- สายไฟต่อวงจร
- คอมพิวเตอร์ + ซอฟต์แวร์ Arduino IDE

ATtiny85-20PU + DIP8 Socket

Atmel ISP Programmer (USBasp)

ตัวอย่างอุปกรณ์ USB ISP Programmer (Clone ราคาถูก) ใช้สำหรับการอัปโหลด เฟิร์มแวร์ (Firmware) จากคอมพิวเตอร์ไปยัง ATTiny85 ในวงจร

ISP / ICSP for Arduino / AVR

"In-system programming (ISP), also called in-circuit serial programming (ICSP), is the ability of some programmable logic devices, microcontrollers, and other embedded devices to be programmed while installed in a complete system, rather than requiring the chip to be programmed prior to installing it into the system."

https://en.wikipedia.org/wiki/In-system_programming

6-pin and 10-pin AVR ISP headers

ICSP-to-ATtiny85 Wiring

ตัวอย่างการต่อวงจรบนเบรดบอร์ด

ข้อสังเกต: ในการต่อวงจรทดลอง สามารถใช้แรงดันไฟเลี้ยง +5V จาก ISP Programmer ได้ ถ้าใช้ปริมาณกระแสไม่มาก แต่ถ้าจะนำไปใช้งานโดยทั่วไป แนะนำให้ใช้แหล่งจ่ายแรงดันคงที่ หรือวงจรควบคุมแรงดันคงที่ เช่น ไอซี 7805

การใช้ซอฟต์แวร์ WokWi Simulator

การคอมไพล์โค้ดและอัปโหลดลงชิป ATTiny85

นำโค้ดที่ได้จำลองและทดสอบการทำงานแล้วมาสร้างเป็น Sketch ใน Arduino IDE (Windows 10)

การติดตั้ง ATTinyCore ใน Arduino IDE

ในส่วน Preferences ของ Arduino IDE ให้ใส่ URL ในช่อง Additional Boards Manager URLs: <u>http://drazzy.com/package_drazzy.com_index.json</u> (ถ้ามี URL อื่น ๆ ให้ใช้สัญลักษณ์, เป็นตัวแบ่ง) จากนั้นทำคำสั่งจากเมนู Tools > Boards Manager เพื่อดาวน์โหลดและติดตั้ง ATTinyCore ตามรูปตัวอย่าง

💿 Boards Manager	×
Type All V Filter your search	
Boards included in this package: Industruino D21G. <u>Online help</u> <u>More info</u>	
ATTinyCore by Spence Konde Boards included in this package: ATtiny441, ATtiny841, ATtiny1634, ATtiny828, ATtiny2313, ATtiny4313, ATtiny24, ATtiny44, ATtiny84, ATtiny25, ATtiny45, ATtiny85, ATtiny261, ATtiny461, ATtiny861, ATtiny87, ATtiny167, ATtiny48, ATtiny88, ATtiny43. More info 1.3.2 V Install	
megaTinyCore by Spence Konde Boards included in this package: ATtiny3216/1616/1606/816/806/416/406, ATtiny1614/1604/814/804/414/404/214/204, ATtiny412/402/212/202, ATtiny3217/1617/1607/817/807/417. More info	
ATtiny Modern(deprecated, use ATTinyCore instead) by Spence Konde	v se

https://github.com/SpenceKonde/ATTinyCore

การเลือกใช้ ATTiny85 ใน Arduino IDE

🥺 attiny85_led_l	blink Arduino 1.8.9	Arduino Ge	Arduino Gemma			
File Edit Sketch	Tools Help		Adafruit Ci	rcuit Playground		
attiny85_led_b	Auto Format Archive Sketch Fix Encoding & Reload Manage Libraries	Ctrl+T Ctrl+Shift+I	Arduino Yú Arduino In Linino One Arduino Ur	in Mini dustrial 101 no WiFi		
void setu	Serial Monitor Serial Plotter	Ctrl+Shift+M Ctrl+Shift+L	Arduino Af Arduino Du Arduino Du	RM (32-bits) Boards ue (Programming Port) ue (Native USB Port)		
}	WiFi101 / WiFiNINA Firmware Updater nRF5 Flash SoftDevice		ATTinyCore ATtiny24/4	≘ 4/84		
<pre>void loop digital delay(1 digital delay(1 } }</pre>	Board: "ATtiny25/45/85" Chip: "ATtiny85" Clock: "8 MHz (internal)" B.O.D. Level: "B.O.D. Disabled" Save EEPROM: "EEPROM retained" Timer 1 Clock: "CPU" LTO (1.6.11+ only): "Enabled" millis()/micros(): "Enabled"		ATtiny44/8 ATtiny25/4 ATtiny45/8 ATtiny48/8 ATtiny48/8 ATtiny87/1 ATtiny87/1 ATtiny261/ ATtiny261/ ATtiny461/	ATtiny25/45/85 ATtiny45/85 (Optiboot) ATtiny48/88 ATtiny48/88 (optiboot) ATtiny87/167 (No bootloader) ATtiny167/87 (Optiboot) ATtiny261/461/861 ATtiny461/861 (optiboot)		
Done uploading.	Get Board Info	ŕ		V		
avrdude: s avrdude: s	Programmer: "USBasp (ATTinyCore)" Burn Bootloader				· · ·	
<					>	
10				ATtiny25/45/85 on	COM99	

การเลือกใช้ความถี่ 8 MHz (Internal)

attiny85_led_blin Siles Edite Statets T	ik Arduino 1.8.9		_		
attiny85_led_b int LED_P void setu	Auto Format Archive Sketch Fix Encoding & Reload Manage Libraries Serial Monitor Serial Plotter	Ctrl+T Ctrl+Shift+I Ctrl+Shift+M Ctrl+Shift+L			
<pre>void loop { digital delay(1</pre>	WiFi101 / WiFiNINA Firmware Update nRF5 Flash SoftDevice Board: "ATtiny25/45/85" Chip: "ATtiny85" Clock: "8 MHz (internal)" B.O.D. Level: "B.O.D. Disabled"	r > > > >	ถ้าจะเปลี่ยนความ (Default) เป็น 8 ขั้นตอน Burn B เพื่อเขียนค่าบิตฟิ (Bit Fuse Sett	เถี่ 1MH; SMHz จะ ootload วส์ลงในข่ ings)	<mark>z</mark> ต้องทำ ler ด้วย ชิป
digital delay(1 } Done burning bo	Save EEPROM: "EEPROM retained" Timer 1 Clock: "CPU" LTO (1.6.11+ only): "Enabled" millis()/micros(): "Enabled" Port Get Board Info	> >		v	
avrdude: s avrdude: s avrdude: se	Programmer: "USBasp (ATTinyCore)" Burn Bootloader t SCK frequency to 187	> /500 Hz		^ ~	
1			ATtiny25/45/8	35 on COM99	

้ตัวอย่างที่ 2: PWM LED Dimming

โจทย์ฝึกหัด: จงวาดผังวงจรเพื่อต่อวงจรบนเบรดบอร์ดในตัวอย่างที่ 2

ตัวอย่างที่ 2: PWM LED Dimming

โจทย์ฝึกหัด: จงต่อวงจรทดลองและทดสอบการทำงานของโค้ดในตัวอย่างที่ 2

ใช้ตัวแปร value เป็นตัวนับ ที่มีค่าอยู่ ในช่วง 0..255 เพื่อ ใช้กับคำสั่ง analogWrite() และกำหนดความ สว่างของ วงจร LED ที่ขา PB0

ค่าของตัวแปร value เป็นจะเพิ่มขึ้น จนถึง 255 แล้วจะ ลดลงถึง 0 ครั้งละ 16

```
const int LED_PIN = PB0; // LED output pin
```

```
int value = 0; // value for the PWM duty cycle
int dir = 1; // counting direction (DOWN=0 or UP=1)
```

```
void setup() {
    pinMode( LED_PIN, OUTPUT );
```

}

}

```
void loop() {
    analogWrite( LED_PIN, value ); // update PWM output
    value += dir ? 16 : -16; // update next value
    if ( value > 255 ) {
        value = 255;
        dir = 0; // change direction: count down
    }
    else if ( value < 0 ) {
        value = 0;
        dir = +1; // change direction: count up
    }
    delay(100);</pre>
```

อัตราการเพิ่มขึ้น หรือลดลงสำหรับ ค่าของตัวแปร value ช้าหรือเร็ว ขึ้นอยู่กับคำสั่ง delay(...)

้ตัวอย่างที่ 3: Push Button - LED Toggle

โจทย์ฝึกหัด: จงวาดผังวงจร (Schematic) สำหรับวงจรบนเบรดบอร์ดในตัวอย่างที่ 3

้คำถาม: ถ้าทดลองต่อวงจรจริง และไม่ใส่ตัวต้านทาน Pull-up ที่ปุ่มกด การทำงาน ของวงจรนี้ จะมีพฤติกรรมที่แตกต่างจากเดิมหรือไม่ ?

ตัวอย่างการต่อวงจร LED ที่ขา PB0 เป็น เอาต์พุต มีวงจรปุ่มกด แบบ Active-Low ที่ ขา PB2 เมื่อมีการกด ปุ่มแล้วปล่อยในแต่ละ ครั้ง ให้สลับสถานะ ของเอาต์พุตหนึ่งครั้ง

ตัวอย่างที่ 3: Push Button - LED

์ โจทย์ฝึกหัด: จงวาดผังวงจร (<mark>Schematic</mark>) สำหรับวงจรบนเบรดบอร์ดข้างล่างนี้ไ

้ตัวอย่างการต่อตัวเก็บประจุ (เช่น 100nF .. 1uF) และตัวตัานทาน (เช่น 100 โอห์ม) เพิ่มที่ขาสัญญาณของปุ่มกด เพื่อช่วยลดปัญหาการเกิด Switch Bounce (การกระ เด้งของสัญญาณจากปุ่มกด)

ตัวอย่างที่ 3: Push Button - LED

โจทย์ฝึกหัด: จงวาดผังวงจร (Schematic) สำหรับวงจรบนเบรดบอร์ดข้างล่างนี้

้อีกตัวอย่างหนึ่งสำหรับเทคนิคในการลดปัญหาการเกิด Switch Bounce คือ การ ต่อตัวเก็บประจุ ตัวต้านทาน และไอซี 74HC14 (Schmitt-Trigger Inverters)

เอกสารอ้างอิงสำหรับไอชี 74HC14

โจทย์ฝึกหัด: จงอธิบายหลักการทำงานของไอซี 74HC14 โดยศึกษาจาก เอกสาร Datasheet ของผู้ผลิต และอธิบายความหมายของคำว่า Hysteresis, Threshold Voltages (V+ และ V-)

Reference: <u>https://www.st.com/resource/en/datasheet/m74hc14.pdf</u> <u>http://www.mouser.com/ds/2/308/74HC14.REV1-34947.pdf</u>

ตัวอย่างที่ 3: Push Button - LED

โจทย์ฝึกหัด: จงต่อวงจรทดลองและทดสอบการทำงานของโค้ดในตัวอย่างที่ 3 (1)

เขียนโค้ดเพื่อวนลูป ให้อ่านค่าจากอินพุต จากวงจรปุ่มกด (ขา <mark>PB2</mark>) แล้วตรวจสอบ สถานะ

ปุ่มกดทำงานแบบ Active-Low ดังนั้น ในขณะที่กดปุ่ม จะ ได้ ค่าของอินพุต เป็น 0 แต่ถ้าไม่กด ปุ่ม จะได้ 1

}

}

}

ถ้ายังกดปุ่มค้างไว้ ให้รอจนกว่า จะ ปล่อยปุ่ม แล้วจึง สลับสถานะของ เอาต์พุต (ขา Р=0)

```
const int LED_PIN = PB0; // LED output pin
const int BTN_PIN = PB2; // Push button input pin
```

```
boolean state = false; // LED output state
```

```
void setup() {
    pinMode( LED_PIN, OUTPUT );
    digitalWrite( LED_PIN, state );
```

```
void loop() {
  if ( !digitalRead( BTN_PIN ) ){ // is the button pressed?
    // wait until the button released
    while ( !digitalRead( BTN_PIN) ) {
        delay(10);
    }
}
```

```
state = !state; // toggle the state
digitalWrite( LED_PIN, state ); // update output
```

การวนลูปซ้ำเพื่อ คอยอ่านค่าอินพุด แล้วทำขั้นตอนตาม เงื่อนไข เป็นรูป แบบการทำงานที่ เรียกว่า Pollingbased I/O

ตัวอย่างที่ 3: Push Button - LED Toggle

โจทย์ฝึกหัด: จงต่อวงจรทดลองและทดสอบการทำงานของโค้ดในตัวอย่างที่ 3 (2)

ตัวอย่างนี้สาธิตการ เปิดใช้งาน "อินเท อร์รัพท์ภายนอก" (Ext. Interrupt) โดยใช้คำสั่ง attachInterrupt() หมายเลข 0 ชึ่งตรง กับขา PB2 ของ Attiny85

ไม่มีการวนลูป เพื่อ อ่านค่าอินพุตที่ขา <mark>P32</mark> สำหรับปุ่มกด

```
const int LED_PIN = PB0; // LED output pin
const int EXT_INT = 0; // use external interrupt: INT0
```

```
volatile boolean state = false; // LED output state
```

```
void callback() {
   state = !state; // toggle state
```

}

}

}

```
void setup() {
  pinMode( LED_PIN, OUTPUT);
  digitalWrite( LED_PIN, state );
  // enable external interrupt 0, falling edge
  attachInterrupt( EXT_INT, callback, FALLING );
```

void loop() { digitalWrite(LED_PIN, state); // update state

ฟังก์ชัน callback() จะถูกเรียกเมื่อกดปุ่ม (ลอจิกจะเปลี่ยนค่า จาก 1 เป็น 0 หรือ เรียกว่า Falling) และ ถือว่า เกิดเหตุการณ์ จากภายนอก

ีการทำงานรูปแบบนี้ เรียกว่า Interruptdriven I/O

ตัวอย่างที่ 3: Push Button - LED

โจทย์ฝึกหัด: จงต่อวงจรทดลองและทดสอบการทำงานของโค้ดในตัวอย่างที่ 3 (3)

```
const int LED_PIN = PB0; // LED output pin
const int EXT_INT = 0; // use INT0
volatile boolean is_btn_pressed = false;
boolean state = false, blinking = false;
uint32_t ts; // timestamp (in msec)
void callback() {
    is_btn_pressed = true; // set flag
}
void setup() {
    pinMode( LED_PIN, OUTPUT);
    digitalWrite( LED_PIN, state );
    attachInterrupt( EXT_INT, callback, FALLING );
    ts = millis();
}
```

```
void loop() {
  if ( is_btn_pressed ) { // the button was pressed.
    is_btn_pressed = false; // clear flag
    blinking = !blinking; // toggle blink mode
  }
  if ( blinking ) { // LED blinking enabled
    if (millis() - ts >= 100 ) {
      ts = millis();
      state = !state; // toggle LED state
    }
  } else { // LED blinking disabled
    state = false; // LED state = OFF
  }
  digitalWrite( LED_PIN, state ); // update output
```

โค้ดนี้สาธิตการทำให้ <mark>LED</mark> กระพริบ และ สามารถเปลี่ยนโหมดการกระพริบได้ เมื่อกดปุ่ม หนึ่งครั้ง จะสลับโหมด (เปิดหรือปิด) การกระ พริบ <mark>LED</mark> คำสั่ง attachInterrupt() เปิดการใช้งานอินเท อร์รัพท์ภายนอก (ใช้อินเทอร์รัพท์หมายเลข 0 และ ตรงกับขา PB2) และเรียกฟังก์ชัน callback() ทุกครั้งที่เกิดเหตุการณ์ "ขอบขาลง" (Falling Edge) ที่ขา PB2

ตัวอย่างที่ 4: LDR - LED

์ โจทย์ฝึกหัด: จงวาดผังวงจร (Schematic) สำหรับวงจรบนเบรดบอร์ดในตัวอย่างที่ 4

ตัวอย่างการต่อวงจร LED ที่ขา PB0 เป็น เอาต์พุต มีวงจร LDR (Photoresistor) และ ตัวต้านทานต่ออนุกรมทำ หน้าที่เป็นเซ็นเซอร์แสง และใช้เป็นอินพุต-แอนะ ล็อกที่ขา PB2 (ADC1) เมื่อแสงน้อย (มืด) จะทำให้ LED สว่าง

ตัวอย่างที่ 4: LDR - LED

โจทย์ฝึกหัด: จงต่อวงจรทดลองและทดสอบการทำงานของโค้ดในตัวอย่างที่ 4

โคัดตัวอย่างนี้ใช้คำสั่ง analogRead() เพื่อ อ่านค่าอินพุตที่ขา PE2 / A1 ซึ่งจะได้ค่าในช่วง 0..1023

ถ้าใช้แรงดันไฟเลี้ยง 5V หรือ 5000 mV ก็สามารถคำนวณเพื่อ แปลงค่าอินพุตให้เป็น ค่าในหน่วยมิลลิโวลด์ (mV) ได้

อ่านค่าอินพุตจากขา แอนะล็อกได้มากขึ้น ถ้าปริมาณแสงเพิ่มขึ้น

```
#include <inttypes.h>
const int LED_PIN = PB0; // LED output pin
const int AIN_PIN = A1; // analog input pin
const uint16_t level_low = 2500;
const uint16_t level_high = 2700;
boolean state = false;
```

```
void setup() {
    pinMode( LED_PIN, OUTPUT);
    digitalWrite( LED_PIN, state );
```

```
}
```

```
void loop() {
```

```
uint16_t value = analogRead( AIN_PIN );
uint16_t mV = (value * 5000UL) / 1024;
if ( state && mV > level_high ) {
  state = false; // turn LED OFF
```

```
else if ( !state && mV < level_low ) {
  state = true; // turn LED ON</pre>
```

```
digitalWrite( LED_PIN, state);
```

LED จะเปลี่ยนสถานะเป็น ON เมื่อค่าอินพุตน้อย กว่า level_low และ เปลี่ยนสถานะเป็น OFF เมื่อค่าอินพุตเพิ่มขึ้น มากกว่า level_high

ตัวอย่างที่ 5: LDR – Relay – Light Bulb

โจทย์ฝึกหัด: จงวาดผังวงจรสำหรับวงจรบนเบรดบอร์ดในตัวอย่างที่ 5

ตัวอย่างการต่อวงจรเปิด-ปิดหลอดไฟแสงสว่าง โดย อัตโนมัติ เมื่อแสงน้อย ด้วย รีเลย์ (โมเดล LU-5-R) ซึ่ง ใช้แรงดัน 5V สำหรับ คอยล์ (Coil Voltage) ใช้ทรานชิสเตอร์ (NPN) ควบคุมการทำงานของ รีเลย์

ตัวอย่างข้อมูลเชิงเทคนิคสำหรับรีเลย์ LU-5-R

CONTACT RATING

1 Form C (1PDT)	AC 120V	1A
(IFDI)	DC 24V	2A

COIL DATA(0.2W~0.36W, at 25°C)

Coil Nominal Voltage (VDC)	Resistance Tol.±10% (Ohms)	Nominal Current (mA)	Maximum Pick Up Voltage (V)	Minimum Drop Out Voltage (V)
3	25	120.0	2.25	0.3
5	125	40.0	3.75	0.5
6	180	33.3	4.5	0.6
9	405	22.2	6.75	0.9
12	720	16.7	9.0	1.2
24	2,880	8.3	18.0	2.4

BOTTOM VIEW

N.O.

N.C. = Normally Closed N.O. = Normally Open

Reference: <u>https://datasheet.octopart.com/LU-5-R-Rayex-datasheet-10584258.pdf</u>

ตัวอย่างที่ 6: Voltage Level Comparator

โจทย์ฝึกหัด: จงวาดผังวงจรสำหรับวงจรบนเบรดบอร์ดในตัวอย่างที่ 6

ตัวอย่างการอ่าน ค่าอินพุต-แอนะ ล็อก 2 ช่อง (A และ E) นำมา เปรียบเทียบกัน แล้วกำหนด สถานะของ เอาต์พุต (LED)

ตัวอย่างที่ 6: Voltage Level Comparator

โจทย์ฝึกหัด: จงต่อวงจรทดลองและทดสอบการทำงานของโค้ดในตัวอย่างที่ 6

คำสั่ง analogRead() ใช้สำหรับอ่าน ค่าแรงดันอินพุต ที่ขา ADC1 (A1) และ ADC2 (A2) แล้วนำมาเปรียบ เทียบกัน ในตัวอย่างนี้ ช่อง A หมาย ถึงขา A1 ได้แรงดันอินพุตจากวงจร LDR และช่อง B คือขา A2 ได้แรง ดันอินพุตจากวงจรตัวต้านทานปรับ ค่าได้ ถ้า A < B จะทำให้ LED สว่าง

```
const int LED_PIN = PB0; // LED output pin
const int A_PIN = A1; // analog input A, use ADC1 pin
const int B_PIN = A2; // analog input B, use ADC2 pin
void setup() {
    pinMode( LED_PIN, OUTPUT );
    digitalWrite( LED_PIN, LOW );
}
void loop() {
    int a = analogRead( A_PIN ); // read input A
    int b = analogRead( B_PIN ); // read input B
    digitalWrite( LED_PIN, (a<b) ); // update output
    delay(100);
}
```

การใช้ไอซีเปรียบเทียบแรงดัน

้โจทย์ฝึกหัด: จงวาดผังวงจรสำหรับวงจรบนเบรดบอร์ดตามรูปตัวอย่างข้างล่างนี้

ในตัวอย่างที่ 6 เป็นการใช้ ATTiny85 แล้วเขียนโค้ดให้ทำหน้าที่อ่านค่าแรงดันแอนะล็อก 2 ช่อง แล้วเปรียบเทียบกัน เพื่อกำหนดสถานะเอาต์พุตให้ LED ตัวอย่างนี้สาธิตการใช้ ไอซี LM393 ซึ่งเป็นไอซีเปรียบเทียบแรงดัน (Voltage Comparator) แทนการใช้ ATTiny85

ตำแหน่งขาของ LM393

ไอซี LM393 มีวงจรเปรียบเทียบแรงดันที่เป็นสัญญาณแอนะล็อกอยู่ภายใน 2 ชุด (Dual Voltage Comparator) ทำงานได้อิสระจากกัน วงจรเปรียบเทียบแต่ละ ชุด มีขาอินพุต + () และ – และขาเอาต์พุต ถ้าแรงดันที่ขา + สูงกว่าที่ขา – จะให้ เอาต์พุตเป็น 1 แต่ถ้าน้อยกว่าจะได้เป็น 0

Reference: <u>https://www.onsemi.com/PowerSolutions/document/LM393-D.PDF</u>

ตัวอย่างที่ 7: LDR – LM393 – LED

โจทย์ฝึกหัด: จงวาดผังวงจรสำหรับวงจรบนเบรดบอร์ดในตัวอย่างที่ 7

ตัวอย่างสาธิตการต่อวงจรโดยใช้ไอซี LM393 เป็นตัวเปรียบเทียบแรงดัน และ ตรวจสอบการเปลี่ยนแปลงปริมาณแสงด้วย LDR และใช้ตัวต้านทานปรับค่าได้ ในการตั้งค่าเปรียบเทียบ ถ้าแสงน้อย จะทำให้ LED สว่าง

์ ตัวอย่างที่ 7: LDR – LM393 – LED

โจทย์ฝึกหัด: จงต่อวงจรทดลองและทดสอบการทำงานของโค้ดในตัวอย่างที่ 7

```
const int LED_PIN = PB0; // LED output pin
const int TRIG_PIN = PB2; // digital input pin
const int EXT_INT = 0; // use INT0 / PB2 pin
```

```
volatile boolean flag = false;
int value; // input value (0 or 1)
```

```
void callback() {
  flag = true; // set flag
```

```
}
```

```
void setup() {
  pinMode( LED_PIN, OUTPUT);
  digitalWrite( LED_PIN, false );
  attachInterrupt( EXT_INT, callback, CHANGE );
  value = digitalRead( TRIG_PIN );
  digitalWrite( LED_PIN, !value );
}
```

```
void loop() {
    if ( flag ) {
        flag = false; // clear flag
        value = digitalRead( TRIG_PIN );
        digitalWrite( LED_PIN, !value );
    }
    delay(100);
}
```

สัญญาณเอาต์พุตจาก LM393 จะถูกใช้เป็น สัญญาณอินพุต-ดิจิทัล ที่ขา PB2 ซึ่งตรงกับ อินเทอร์รัพท์หมายเลข INT0

เมื่อมีการเปลี่ยนแปลงค่าของอินพุตที่ PB2 จะมีการเรียกฟังก์ชัน callback() และตัวแปร flag จะเป็น true เพื่อระบุว่า มีการ เปลี่ยนแปลงที่อินพุต และจะต้องทำการ อัพเดทเอาต์พุต

ตัวอย่างที่ 8: Trimpot - LED Dimming

โจทย์ฝึกหัด: จงวาดผังวงจรสำหรับวงจรบนเบรดบอร์ดในตัวอย่างที่ 8

Trimpot = Trimmer Potentiometer

ตัวอย่างที่ 8: Trimpot - LED Dimming

โจทย์ฝึกหัด: จงต่อวงจรทดลองและทดสอบการทำงานของโค้ดในตัวอย่างที่ 8

คำสั่ง analogWrite() ใช้สำหรับสร้าง สัญญาณเอาต์พุตแบบ PWM (Pulse Width Modulation) ซึ่งเป็นสัญญาณ แบบมีคาบ แต่ปรับช่วงกว้างที่เป็นลอจิก 1 (High) เทียบกับคาบของสัญญาณ โดยคิดเป็นเปอร์เซ็นต์: 0=0% ถึง 255=100%

คำสั่ง analogRead() อ่านได้ค่าในช่วง 0..1023 ถ้าจะนำค่าที่ได้ไปใช้กับคำสั่ง จะต้องหารด้วย 4 เพื่อให้ค่าอยู่ในช่วง 0..255

```
const int LED PIN = PB0; // digital input pin PB0
const int AIN PIN = A1; // analog input pin A1 (ADC1)
int value = 0; // 0..255
void setup() {
 analogWrite( LED PIN, value ); // set output to 0
}
void loop() {
 int new value = analogRead( AIN PIN )/4;
 if ( new value != value ) { // input value changed ?
   value = new value; // update value
   analogWrite( LED_PIN, value ); // update PWM
   delay(100);
 }
```

ตัวอย่างที่ 9: TMP36 - Buzzer

โจทย์ฝึกหัด: จงวาดผังวงจรสำหรับวงจรบนเบรดบอร์ดในตัวอย่างที่ 9

ตัวอย่างการใช้ไอซี TMP36 (Analog Temperature Sensor IC) สำหรับ วัดอุณหภูมิในช่วง -40°C .. 125°C และ ให้เอาต์พุตเป็นแรงดัน ไฟฟ้า 0V @ -50°C ถึง 1.75V @ -125°C (สเกลแบบเชิงเส้น)

วงจรใช้ทรานซิสเตอร์ แบบ <mark>NPN</mark> เปิด-ปิด การทำงานของบัช เชอร์เสียง

ตัวอย่างที่ 9: TMP36 - Buzzer

โจทย์ฝึกหัด: จงต่อวงจรทดลองและทดสอบการทำงานของโค้ดในตัวอย่างที่ 9

}

```
const int BUZ_PIN = PB0; // digital output pin (buzzer)
const int TMP_PIN = A2; // analog input pin (TMP36)
const int EXT_INT = 0; // use INT0
const int LEVEL = 40; // compare level (deg.C)
```

```
volatile boolean enable = true;
```

```
void callback() {
```

```
enable = !enable; // enable/disable buzzer alarm
```

```
}
```

```
void setup() {
   pinMode( BUZ_PIN, OUTPUT );
   attachInterrupt( EXT_INT, callback, FALLING );
}
```

```
// TMP36: 0V @ -50°C, 1.75V @ 125°C
// Temp [deg°C] = (voltage [mV] - 500)/10
```

```
void loop() {
    int value = analogRead( TMP_PIN );
    int mV = (value * 5000L) / 1024;
    int temp = (mV - 500) / 10;
    int output = enable && (temp >= LEVEL);
    digitalWrite( BUZ_PIN, output );
```

ในดัวอย่างนี้ ถ้าค่าอุณหภูมิเกิน 40 องศา จะทำให้บัซเชอร์เสียง (Sound Buzzer) มีเสียงดัง เพื่อเป็นการแจ้งเตือน และสามารถกดปุ่มเพื่อเปิดหรือปิดการแจ้งเตือนด้วยเสียงได้

ตัวอย่างที่ 10: TMP36 – RGB LED

โจทย์ฝึกหัด: จงวาดผังวงจรสำหรับวงจรบนเบรดบอร์ดในตัวอย่างที่ 10

ในตัวอย่างนี้ สาธิตการวัดอุณหภูมิด้วยไอชี TMP36 และใช้ RGB LED (Common Cathode) แสดงช่วงของค่าที่วัดได้ เช่น สีน้ำเงินสำหรับค่าที่ต่ำกว่า 20 องศา หรือ สีแดง สำหรับค่าที่สูงกว่า 40 องศา

ตัวอย่างที่ 10: TMP36 – RGB LED

โจทย์ฝึกหัด: จงต่อวงจรทดลองและทดสอบการทำงานของโค้ดในตัวอย่างที่ 10

```
const int RGB_PINS[] = {PB0, PB1, PB4};
const int TMP36_PIN = A3;
```

```
typedef union _RGB {
   struct { byte r,g,b; } s;
   byte v[3];
} RGB;
```

RGB rgb;

```
void setup() {
  for ( int i=0; i < 3; i++ ) {
    pinMode( RGB_PINS[i], OUTPUT );
    digitalWrite( RGB_PINS[i], 0 );
  }
}</pre>
```

```
void loop() {
```

```
// read analog input from TMP36 sensor
int value = analogRead( TMP36 PIN );
int mV = (value * 5000L) / 1024;
int temp = (mV - 500) / 10; // value in deg.C
memset( rgb.v, 0x00, 3 );
if (temp < 10) { // below 10 deg.C
  rgb.s.b = 1; // blue color
} else if (temp < 20) { // 10..20 deg.C</pre>
  rgb.s.b = 1; rgb.s.g = 1;
} else if (temp < 30) { // 20..30 deg.C</pre>
rgb.s.g = 1; // green color
} else if (temp < 40) { // 30..40 deg.C</pre>
rgb.s.g = 1; rgb.s.r = 1;
} else { // 40+ deg.C
  rgb.s.r = 1; // red color
}
for ( int i=0; i < 3; i++ ) {</pre>
  digitalWrite( RGB_PINS[i], rgb.v[i] );
```

ตัวอย่างที่ 11: Uno – Attiny85 Serial Link

์ ตัวอย่างสาธิตการ เชื่อมต่อเพื่อสื่อสาร ข้อมูลแบบบิตอนุกรม (Serial) ระหว่าง บอร์ด Arduino Uno และ ATtiny85 บนเบรดบอร์ด

ขา 3 และ 4 ใช้ สำหรับขา Rx และ Tx ของ SoftSerial ตามลำดับ

การต่อสายระหว่างขา Rx และ Tx ของทั้ง สองบอร์ด จะต้องไขวั สายกัน (Rx -> Tx และ Tx <- Rx)

ตัวอย่างที่ 11: Uno – Attiny85 Serial Link

ตัวอย่างที่ 11: Uno – Attiny85 Serial Link

```
#include <SoftwareSerial.h>
SoftwareSerial mySerial( 3, 4 ); //rx, tx
```

```
void setup() {
  mySerial.begin(4800);
  mySerial.println( "ATTiny85..." );
}
```

```
char sbuf[16]; // char buffer
```

```
void loop() {
   static byte cnt = 0;
   sprintf( sbuf, "cnt: %03d", ++cnt );
   mySerial.println( sbuf );
   delay(200);
} Attiny85
```

Uno ทำหน้าที่คอยรับข้อมูลจาก Attiny85 ด้วยวิธี SoftSerial (ตั้งค่า baud 4800) และเมื่อได้รับข้อความ ใด ๆ จะส่งต่อออกทาง Serial (Hardware) และเปิดดูข้อมูลได้ใน Serial Monitor

```
#include <SoftwareSerial.h>
SoftwareSerial mySerial(3, 4); //rx, tx
```

```
#define BUF_LEN 64
char buf[ BUF_LEN+1 ];
int index = 0;
```

```
void setup() {
   Serial.begin(115200);
   mySerial.begin(4800);
```

}

}

```
void loop() {
  while (mySerial.available() > 0) {
    if ( index < BUF_LEN ) {
        buf[index++] = mySerial.read();
    } else break;
  }
  if (index > 0) {
    buf[index] = '\0';
    index = 0;
    Serial.print(buf);
  }
}
```

Uno

ตัวอย่างที่ 12: Ultrasonic Distance Sensor

โจทย์ฝึกหัด: ให้ศึกษาการทำงานของโมดูล HC-SR04 จากเอกสารผู้ผลิต

ตัวอย่างนี้สาธิตการอ่านค่า ระยะห่างจากวัตถุด้วยโมดูล HC-SR04 (Ultrasonic Distance Sensor) ซึ่งมี ขา TRIGGER และ ECHO

ในการอ่านค่าจาก HC-SR04 แต่ละครั้ง จะต้อง สร้างสัญญาณพัลส์ (Pulse) เป็นสัญญาณกระตุ้น เพื่อเริ่ม ต้นการวัดด้วยคลื่นเสียง ความถี่สูง และเอาต์พุตที่ได้ จะเป็นสัญญาณพัลส์ที่ขา ECHO ซึ่งความกว้างของ พัลส์เป็นระยะเวลาเดินทาง ของเสียงเดินทางไปและ สะท้อนกลับมา (หน่วย: ไมโครวินาที)

ตัวอย่างที่ 12: Ultrasonic Distance Sensor

ข้อสังเกต: บอร์ด Uno ทำหน้าที่รับข้อความจาก Attiny85 ที่วัดระยะห่าง จากวัตถุด้วย HC-SR04 และส่งต่อข้อความไปยัง Serial Monitor และค่าที่ ได้มีหน่วยเป็นเซนติเมตร (cm.)

TIN KER CAD	uno_a	ttiny8	5_seria	al_ultra	sonic			All changes sa	ved 📋	
B	▣	•	*	Ē	Ô	Simulator time: 00:00:10.112	Code	e 📃 Stop Simulation	Export	Share
						Ultrasonic Distance Sensor	Text	★ 🖨 🗼	2 (Arduino U	Jno R3) 🔻
		16.0in / 40.5cm	×)		<pre>1 #include <softwareserial 2 SoftwareSerial mySerial(3 4 #define BUF_LEN 64 5 char buf[BUF_LEN+1]; 6 int index = 0; 7 8 void setup() { 9 Serial.begin(115200); 10 mySerial.begin(4800); 11 } 12 void loop() { 13 while (mySerial.availa 14 if (index < BUF_LEN 15 buf[index++] = my 16 } else break; 17 } 18 if (index > 0) { 19 buf[index] = '\0'; 20 index = 0; 21 Serial.print(buf); 22 } 23 } 24</softwareserial </pre>	<pre>.h> 3, 4); //rx, tx ble() > 0) {) { Serial.read(); </pre>		
			5.0	0 V		attiny	Serial Monitor			-
			38.	2 mA			40 40 40 40			
				ŢŢ	SUPPOR		40 40 39			*
						+ <u>+</u> +			Send	Clear

ตัวอย่างที่ 12: Ultrasonic Distance Sensor

```
#include <SoftwareSerial.h>
SoftwareSerial mySerial( 3, 4 ); //rx, tx
const int TRIG_PIN = PB0, ECH0_PIN = PB2;
#define SOUND_SPEED (340) // m/s
```

```
unsigned long readSensor() {
  digitalWrite( TRIG_PIN, HIGH );
  delayMicroseconds(10);
  digitalWrite( TRIG_PIN, LOW );
  return pulseIn( ECHO_PIN, HIGH, 50000 );
```

```
void setup() {
  mySerial.begin(4800);
  pinMode( ECHO_PIN, INPUT );
  pinMode( TRIG_PIN, OUTPUT );
  digitalWrite( TRIG_PIN, LOW );
}
void loop() {
  unsigned long duration = readSensor(); // usec
  int d = (SOUND_SPEED*duration)/2/10000;
  mySerial.println( d ); // distance in cm.
  delay(1000);
}
```

```
#include <SoftwareSerial.h>
SoftwareSerial mySerial( 3, 4 ); //rx, tx
```

```
#define BUF_LEN 64
char buf[ BUF_LEN+1 ];
int index = 0;
```

```
void setup() {
   Serial.begin(115200);
   mySerial.begin(4800);
}
void loop() {
   while (mySerial.available() > 0) {
      if ( index < BUF_LEN ) {
        buf[index++] = mySerial.read();
      } else break;
   }
   if (index > 0) {
      buf[index] = '\0';
      index = 0;
      Serial.print(buf);
}
```

ข้อสังเกต: คำสั่ง pulseIn() ของ Arduino API ใช้สำหรับวัดความกว้างของสัญญาณพัลส์

Uno

์ ตัวอย่างที่ 13: 74HC595 – LEDs

โจทย์ฝึกหัด: ให้ศึกษา การทำงานของไอชี 74HC595 จากเอกสาร ของผู้ผลิต

ตัวอย่างการต่อวงจรเพื่อ สาธิตการเลื่อนข้อมูล 8 บิต (หรือ 1 ไบต์) โดยส่ง จาก Attiny85ออกไป ยังไอซี 74HC595 ซึ่งมี เอาต์พุต 8 ขา นำไปต่อ กับวงจร LED แบบ 8 ตำแหน่ง

ตัวอย่างที่ 13: 74HC595 – LEDs (Code 1/2)

}

}

const int SH CP PIN = PB0; // shift clk pin const int ST CP PIN = PB1; // storage clk pin const int DS PIN = PB2; // serial data pin

byte data = 0x01; // data byte

```
void setup() {
  pinMode( SH CP PIN, OUTPUT );
 pinMode( ST CP PIN, OUTPUT );
 pinMode( DS PIN, OUTPUT );
 digitalWrite( SH CP PIN, LOW );
 digitalWrite( ST CP PIN, LOW );
```

ATTiny85 สื่อสารกับ 74HC595 โดยใช้ สัญญาณ

- 1) Shift Register Clock (SH_CP)
- 2) Storage Register Clock (ST_CP) และ
- **3) Serial Data Input (DS)**

```
void shiftDataOut( byte data ) {
 int bit;
 digitalWrite( SH CP PIN, LOW );
 for ( int i=0; i < 8; i++ ) { // shift bit, MSB</pre>
first
      bit = data & 0x80 ? HIGH : LOW;
      digitalWrite( DS PIN, bit );
      data = data << 1;
      digitalWrite( SH CP PIN, HIGH );
      digitalWrite( SH CP PIN, LOW );
```

```
digitalWrite( ST CP PIN, HIGH );
digitalWrite( ST_CP_PIN, LOW );
```

```
void loop() {
 shiftDataOut( data ); // shift one byte to 74HC595
 // rotate-shift-left by 1-bit position
 data = (data \ll 1) | (data \gg 7);
 delay(100);
```

ตัวอย่างที่ 13: 74HC595 – LEDs (Code 2/2)

โค้ดตัวอย่างนี้สาธิตการใช้คำสั่ง shiftOut() ซึ่งเป็นคำสั่งของ Arduino API สำหรับเลื่อนข้อมูล ขนาดหนึ่งไบต์ทีละบิตออกไป โดย กำหนดลำดับของการเลื่อนบิต (Bit Order) คือ ให้บิต MSB ออกไป ก่อน (MSB First)

```
const int SH_CP_PIN = PB0; // shift clk pin
const int ST_CP_PIN = PB1; // storage clk pin
const int DS_PIN = PB2; // serial data pin
```

byte data = 0x01; // data byte

```
void setup() {
  pinMode( SH_CP_PIN, OUTPUT );
  pinMode( ST_CP_PIN, OUTPUT );
  pinMode( DS_PIN, OUTPUT );
  digitalWrite( SH_CP_PIN, LOW );
  digitalWrite( ST_CP_PIN, LOW );
```

```
}
```

```
void loop() {
    shiftOut( DS_PIN, SH_CP_PIN, MSBFIRST, data );
    digitalWrite( ST_CP_PIN, HIGH );
    digitalWrite( ST_CP_PIN, LOW );
    // rotate-shift-left by 1-bit position
    data = (data << 1) | (data >> 7);
    delay(200);
}
```


SHIFT CLOCK = Shift Register Clock LATCH CLOCK = Storage Register Clock

Reference: https://www.onsemi.com/pub/Collateral/MC74HC595-D.PDF

Pin Descriptions

INPUTS A (Pin 14)

Serial Data Input. The data on this pin is shifted into the 8-bit serial shift register.

CONTROL INPUTS Shift Clock (Pin 11)

Shift Register Clock Input. A low– to–high transition on this input causes the data at the Serial Input pin to be shifted into the 8–bit shift register.

Reset (Pin 10)

Active–low, Asynchronous, Shift Register Reset Input. A low on this pin resets the shift register portion of this device only. The 8–bit latch is not affected.

Latch Clock (Pin 12)

Storage Latch Clock Input. A low-to-high transition on this input latches the shift register data.

Output Enable (Pin 13)

Active-low Output Enable. A low on this input allows the data from the latches to be presented at the outputs. A high on this input forces the outputs (Q_A-Q_H) into the high-impedance state. The serial output is not affected by this control unit.

OUTPUTS

Q_A - Q_H (Pins 15, 1, 2, 3, 4, 5, 6, 7)

Noninverted, 3-state, latch outputs.

SQ_H (Pin 9)

Noninverted, Serial Data Output. This is the output of the eighth stage of the 8-bit shift register. This output does not have three-state capability.

Logic Diagram

Reference: https://www.onsemi.com/pub/Collateral/MC74HC595-D.PDF

เอกสารอ้างอิง: ATtiny85 Datasheet

